![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Методика расчета изменения диаметра уплотняющего пояска при контактной точечной сварки с обжатием периферии соединенияРасчет изменения диаметра уплотняющего пояска при контактной точечной сварки с обжатием периферии соединения, как и при традиционных способах КТС, представляет собой математическое моделированиепроцесса формирования соединения. Он также осуществляется в отдельные дискретные моменты времени t от начала до окончания импульса тока, но только решением относительного диаметра уплотняющего пояска dПt уравнения (3.17) термодеформационного равновесия процесса сварки с обжатием периферийной зоны соединения. При этом параметры внешнего силового воздействия на детали заданы как параметры режима сварки. Последовательность и логика выполнения алгоритма (рис. 4.5) для расчета изменения диаметра уплотняющего пояска при КТС с обжатием периферии соединения [211, 212, 243], организация и выполнение в нем циклов по времени t с неизменным шагом Δt (по блокам 5…13) и по диаметру уплотняющего пояска dПt с изменяющимся шагом ΔdПj (по блокам 7…11) такие же, как и в алгоритме для традиционных способов КТС, показанном на рис. 4.1. Решение задачи также осуществляется методом итераций, так как уравнение (3.17) относительно dПt является трансцендентным. Осуществляется алгоритм следующим образом.
В большинстве известных способов точечной сварки с обжатием периферийной зоны соединения [59…70, 245] силовое воздействие на детали задают двумя силовыми параметрами режима: усилием FСВt сжатия деталей приводом сварочной машины и усилием F0t их обжатия кольцевыми силовыми пуансонами в периферийной зоне соединения (см. рис.1.7) как неизменными, так и программированными по величине. В последнем случае их рационально задавать в виде аппроксимированных функций, например, выраженных зависимостями (4.5) и (4.6). Коэффициенты аппроксимации АFсв, ВFсв, CFсв, t1, a1, b1 и АFо, ВFо, CFо, t1, a2, b2 в этом случае водятся в исходных данных (табл. 4.3). Усилие же сжатия на токопроводящем электроде FЭt определяется из соотношения (1.6) усилий сжатия деталей приводом сварочной машины FСВ, токопроводящими электродами FЭt и обжимными втулками F0t, которое, с учётом необходимости расчетов в дискретные моменты t процесса КТС, можно преобразовать к следующему виду:
Вычисление диаметра пояска dПt в фиксированный момент t, осуществляется также методом итераций путем последовательного приближения (рис. 4.3). Цикл по диаметру уплотняющего пояска dПt с уменьшением шага ΔdПj осуществляется блоками 8...12. В блоках 8...10 последовательно вычисляются значения параметров термодеформационных процессов, протекающих при КТС с обжатием периферийной зоны соединения. Таблица 4.3 Исходные данные силового воздействия на детали при расчете диаметра уплотняющего пояска по уравнению (3.17)
При КТС с обжатием периферийной зоны соединения не все усилие (FЭt+FОt) сжатия деталей электродными устройствами может передаваться в контур уплотняющего пояска. Частично оно может уравновешиваться усилием FДt, необходимым для сближения деталей до соприкосновения их поверхностей при наличии между ними зазоров. Кроме того, если сумма усилия FДt и усилия FУt, передаваемого в контур уплотняющего пояска от обжимных втулок меньше, чем усилие сжатия ими деталей FОt, т. е.
уравновешивается в кольцевом контакте. Поэтому для расчётов dПt уравнение (3.17) рационально преобразовать к виду:
Левая часть этого равенства согласно (3.9), (3.10) и (3.21) равна усилию FCt, уравновешиваемому в площади свариваемого контакта давлением в ядре РЯt и напряжениями в уплотняющем пояске σCРt. Правая же его часть равна усилию
При итерациях по диаметру уплотняющего пояска dПt сравниваются значения Оценку адекватности термодеформационной модели процесса точечной сварки с обжатием периферийной зоны соединения реальному процессу формирования соединения производили так же обобщенно, как и проверку описанной выше термодеформационной модели для традиционных способов точечной сварки. Так же при сварке деталей осуществляли прерывания процесса формирования соединения и измеряли диаметр уплотняющего пояска, а затем сравнивали его значения с расчетными для тех же условий сварки и моментов формирования соединения. Многочисленные сравнения расчетных и экспериментальных значений диаметра уплотняющего пояска для условий сварки деталей толщиной 1….4 мм из высоколегированных и углеродистых сталей, а также алюминиевых сплавов, показали, что их расхождения не превышают 10…20 %, что в определенной мере, отражает приемлемую для приближенных решений технологических задач степень адекватности термодеформационной модели процесса формирования соединения и реального процесса точечной сварки с обжатием периферийной зоны соединения [210…212, 243]. Не нашли, что искали? Воспользуйтесь поиском:
|