![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Определение степени и скорости пластической деформации металла в зоне точечной сваркиПо-видимому, в теории точечной сварки понятия степени и скорости пластической деформации металла в зоне формирования соединения определяются не совсем корректно (см. п. 2.5) и математические зависимости для расчёта их параметров не в полной мере отражают сущность этих процессов при КТС и не пригодны для решения практических задач. Ниже описана методика определения степени и скорости деформации в процессе формирования соединения [203, 215, 240], разработанная для условий КТС и вполне приемлемая для решения технологических задач. В теориях пластичности и обработки металлов давлением, деформацией называют изменение размеров и формы рабочего тела без изменения его массы и объема. При этом, понятие «деформация» относят как к изменению размеров и формы элементарных объемов тела, так и к изменению макроскопических параметров формы и размеров. Количественное определение абсолютной, относительной либо логарифмической (истинной) деформации неизбежно связано с измерением расстояний между точками тела, в том числе и внутри его, поскольку пластическая деформация представляет собой перемещение элементарных объемов тела (точек) относительно друг друга [220, 221, 225, 226]. Однако в условиях точечной сварки сделать это экспериментально с достаточной степенью точности, используя существующие методики (см. п. 2.5.1), не представляется возможным. Вместе с тем, в теории обработки металлов давлением известен так называемый «метод определения степени пластической деформации по смещенному объёму». Так, при деформации (осадке) цилиндра объёмом VД силами σ (рис. 3.27), которые распределены по его торцевым поверхностям, степень деформации ε, определяемая по смещенному объему VСМ (заштрихован), равна [221]:
- пластические деформации металла при КТС локализованы в объеме металла зоны сварки Vt, ограниченном наружными поверхностями свариваемых деталей и цилиндрической поверхностью, образующей которой является контур L1, а направляющей — линия, на 10...18 % выходящая за контур уплотняющего пояска: - зона пластических деформаций Vt вне контура L1 окружена жесткой оболочкой, так как радиальные деформации металла в относительно узком (вследствие большого градиента температуры) поясе VУП между контурами L1 и L2, находящегося в упругопластическом состоянии, а также окружающего холодного металла VУ вне контурами L1 и L2, который деформируется только упруго, незначительны и ими можно пренебречь; - В любой дискретный момент времени t процесса формирования соединения при КТС на цилиндрический пластически деформируемый объем Vt металла зоны сварки, со стороны жесткого кольца VУ холодного металла, который деформируется только упруго, через относительно узкий пояс металла VУП, находящегося в упругопластическом состоянии, действуют радиальные напряжения σr. В результате этого при КТС пластическое течение металла возможно в основном лишь в осевом направлении. Перемещение основного объема деформируемого металла, вследствие наличия осевого градиента температуры, происходит в направлении свариваемого контакта (см. п. 2.5.2). При этом элементарные объемы металла при его пластическом течении в зоне сварки перемещаются так же, как при деформации цилиндров 1 и 2, сжатых силами σ1, радиальными напряжениями σr, которые распределены по боковым их поверхностям (рис. 3.28, б). Таким образом, пластическое течение элементарных объемов металла в зоне сварки при КТС и при деформации цилиндров, напряжениями σr, распределенными по боковым их поверхностям, происходит так же, как при описанной выше пластической деформации цилиндра при его осадке (см. Степень деформации металла в зоне сварки εt, в любой момент времени t процесса формирования соединения при при контактной точечной сварке, на основании сказанного выше (см. рис. 3.28, б) можно определить по зависимости (рис. 3.29):
где VСМt и Vt — смещенный и деформируемый объемы в момент времени t. Физическая модель процессов макропластических деформаций при формировании точечных сварных соединений (см. п. 2.5.2) и сделанные выше допущения, позволяют определить смещенный объем металла при КТС
где для момента времени t, βT (Т) — температурный коэффициент объемного расширения; Т(z,r,φ,t) — функция, описывающая изменение температуры в зоне сварки; β* – коэффициент объемного расширения при плавлении металла, примеры значений которого показаны в табл. 3.3. Приращения смещенного объема
где для момента времени t, Подставив зависимости (3.63…3.66) в (3.62) получаем интегральное выражение, которое позволяет определить смещенный объем металла VСМt в любой момент процесса точечной сварки:
Выразив деформируемый объём Vt интегральной зависимостью и подставив ее совместно с (3.67) в формулу (3.61), получаем интегральное выражение, которое позволяет определить степень пластической деформации металла в зоне формирования точечного сварного соединения, в любой момент времени t на стадии нагрева [203, 240]:
Приближенные технологические расчеты по зависимости (3.68) можно упростить, если кроме допущений, описанных выше, принять и следующие: - зона сварки осесимметрична; - детали имеют одинаковые теплофизические свойства и одинаковую толщину, т. е. зона сварки симметрична относительно плоскости свариваемого контакта; - температурный коэффициент объемного расширения металла βT не зависит от градиента температуры по координатам и принимается по ее усредненной величине, т. е. - электроды имеют одинаковую геометрию рабочих поверхностей и вдавливаются в поверхности деталей на одинаковую глубину, т. е.:
Тогда, приняв допущения, что зона интенсивных пластических деформаций при КТС ограничена поверхностями деталей в контактах электрод–деталь и цилиндрической поверхностью, образующая которой параллельна оси электродов, а направляющей является контур контакта деталь–деталь, интеграл в зависимости (3.68), который определяет объем деформируемого металла Vt, при толщине деталей s и диаметре уплотняющего пояска dПt будет равен:
Сделанные допущения, в частности, о том, что температурный коэффициент объемного расширения металла βT не зависит от температуры, т. е. βT = const, позволяют упростить вычисление первого тройного интеграла (в квадратных скобках) в зависимости (3.68), который определяет приращения
Очевидно, что тройной интеграл в круглых скобках аналогичен зависимости (3.69), а выражение с двойным интегралом в квадратных скобках аналогично зависимости (3.44), если в нее подставить следующие пределы интегрирования: z1 = 0, z2 = s, r1 = 0, r2 = dПt / 2. Тогда, с учетом (3.44) и (3.69), а также того, что температурный коэффициент объемного расширения βT и температурный коэффициент линейного расширения αT связаны между собой следующим соотношением: βT = 3 αT [123], зависимость (3.70) можно преобразовать к следующему виду:
Допущение об осесимметричности зоны сварки значительно упрощает вычисление и второго тройного интеграла (в квадратных скобках) в зависимости (3.68), который определяет приращение
Функцию, выражающую зависимость координаты r от координаты z в уравнении изотермы температуры плавления:
Подставив ее в зависимость (3.72) и вычислив интеграл при переменных пределах интегрирования
Все они являются телами вращения, а потому объемы - при сферической рабочей поверхности электрода
- при конической форме электрода
- при цилиндрической форме электрода
где ct — глубина вдавливания электродов в момент времени t; RЭ — радиус сферической рабочей поверхности электрода; dЭ — диаметр плоской рабочей поверхности электрода; dOt — диаметр отпечатка (контакта) электрод-деталь в момент времени t. Вторым слагаемым в зависимости (3.74) можно пренебречь потому, что глубина вдавливания электродов при КТС обычно не превышает 10...20 % от толщины s свариваемых деталей, т. е. Наиболее сложной задачей при расчетах вытесненного электродами объема
Практика сварки электродами со сферической и плоской рабочими поверхностями показывает, что при сварке на режимах близких к оптимальным, например, рекомендованных в работах [3, 9, 11, 15...17], глубина их вдавливания в поверхности деталей в процессе формирования соединения изменяется примерно одинаково. Поэтому, при приближенных технологических расчетах значений Тогда зависимость (3.68) для расчета степени пластической деформации металла в зоне сварки εt в любой момент t процесса формирования соединения на стадии нагрева с учетом сказанного выше и зависимостей (3.71), (3.73) и (3.77) можно преобразовать к следующему окончательному виду, удобному для практических расчетов [210, 217]:
где для момента времени t, αТ — температурный коэффициент линейного расширения; azt, art и с — коэффициенты (см. зависимость 3.36); tНП — время начала плавления металла (см. зависимость 3.37); при сферической рабочей поверхности электрода
при конической и цилиндрической форме электрода
RЭ и dЭ – радиус (при сферической) и диаметр (при плоской) рабочих поверхностей электродов; сt — глубина вдавливания электродов в поверхности деталей (см. зависимость 3.77). Таким образом, зависимость (3.78) позволяет при технологических расчетах приближенно определить степень пластической деформации εt металла в процессе формирования точечного сварного соединения в любой его момент t на стадии нагрева. Скорость деформации, как это общепринято в теориях пластичности и обработки металлов давлением — это изменение степени деформации εt в единицу времени [220, 221, 227,228], т. е.:
Размерность скорости деформации зависит от размерности ее степени и может быть В соответствии с выражением (3.79) скорость деформации можно определить как производную от функции, описывающей изменение по времени степени пластической деформации металла зоны сварки, т. е. производную от зависимости (3.78). Однако в связи с тем, что она содержит не дифференцируемую аналитически erf – функцию, то точное аналитическое определение скорости деформации по (3.79) невозможно. Даже при приближенном дифференцировании функции
где Δεt — приращение степени деформации 3.5.3. Определение температуры металла в зоне пластических Методика, по которой рассчитывается изменение сопротивления пластической деформации металла при КТС, предопределяет осреднение температуры в объеме металла зоны интенсивных пластических деформаций. Рассчитать среднюю температуру металла пластически деформируемого в зоне сварки можно по зависимости (3.44). В разделе 2.5.2 экспериментально определено, что пластические деформации металла зоны сварки на стадии нагрева в основном локализованы в области, ограниченной контуром L1, диаметр которого dДt на 5...15 % больше диаметра dПt уплотняющего пояска, т. е.
где для момента времени t, ТПЛ — температура плавления свариваемого металла; tНП — время начала плавления металла (см. зависимость 3.37); 3.5.4. Определение высоты уплотняющего пояска в свариваемом Для решения технологических задач точечной сварки с обжатием периферийной зоны соединений по уравнению (3.17) в любой момент процесса формирования соединения необходимо определять высоту уплотняющего пояска hПt (рис. 3.34), которая входит в зависимость (3.19).
где в момент времени t, VСМt — объем металла зоны сварки, смещенный к свариваемому контакту; SКt — площадь контакта деталь–деталь. Изменение смещённого объёма VСМt в процессе точечной сварки описывается интегральным выражением (3.67). Тогда, выразив площадь контакта деталь–деталь SКt интегральной зависимостью
и подставив ее совместно с зависимостью (3.67) в формулу (3.82) получаем интегральное выражение, которое позволяет в любой момент времени t на стадии нагрева определить высоту уплотняющего пояска hПt, [204, 210]:
где обозначения полностью соответствуют зависимости (3.67). Точные аналитические расчеты по зависимости (3.84) затруднительны, а для решения технологических задач может быть и не рациональны, по тем же причинам, что и зависимости (3.68). При допущениях же, которые были сделаны для зависимости (3.68), в частности, об осесимметричности зоны сварки и о ее симметричности относительно плоскости свариваемого контакта, по зависимости (3.82) можно производить приближённые технологические расчёты. В этом случае, вычислив интеграл в (3.83)
и подставив его, совместно с зависимостями (3.70)…(3.77), в выражение (3.84) после преобразований получаем формулу для расчетов высоты уплотняющего пояска в любой момент t процесса формирования соединения при сварке деталей одинаковой толщины [204, 243]:
где для момента времени t, αТ — температурный коэффициент линейного расширения; ТПЛ — температура плавления свариваемого металла; при сферической рабочей поверхности электрода
при конической и цилиндрической форме электрода
RЭ и dЭ – радиус (при сферической) и диаметр (при плоской) рабочих поверхностей электродов; сt — глубина вдавливания электродов в поверхности деталей (см. зависимость 3.77). Таким образом, описанные выше методики расчетного определения степени и скорости пластической деформации, температуры металла в зоне сварки, сопротивления его пластической деформации, а также изменения высоты уплотняющего пояска при формировании сварного соединения, позволяют проводить практические расчёты по уравнениям термодеформационного равновесия процессов сварки (3.11) и (3.17), как для традиционных способов сварки, так и для способов сварки с обжатием периферийной зоны соединений.
Не нашли, что искали? Воспользуйтесь поиском:
|