Главная | Случайная
Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Классификация энергетических ресурсов




Энергетический ресурсэто запасы энергии, которые при данном уровне техники могут быть использованы для энергоснабжения. Это широкое понятие относится к любому звену «энергетической цепочки», к любой стадии энергетического потока на пути от природного источника стадии потребления энергии.

Энергоресурсы классифицируются в зависимости от целей и задач классификации. Если за основу взять стадии энергетического потока, то рассматривать следующие виды энергетических ресурсов, энергии энергоносителей:

природные энергетические ресурсы, которые, в свою очередь подразделяются на: топливные: органическое топливо—уголь, нефть, газ, сланцы, торф, дрова и некоторые другие (например, битуминозные пески); расщепляющиеся материалы (ядерное горючее) – уран 235 и 238; нетопливные: гидроэнергия, энергия Солнца, ветра, приливов, морских волн, геотермальная энергия и некоторые другие виды (например, энергия разности температурных потенциалов океанских глубин и поверхности);

облагороженные (обогащенные) энергоресурсы: брикеты, концентраты, сортовой уголь, промпродукт, шлам, отсев;

переработанные энергоресурсы: светлые нефтепродукты, мазуты, прочие темные нефтепродукты, кокс, полукокс, коксовая мелочь, уголь древесный, смола, антрацит;

преобразованные энергетические ресурсы: электроэнергия, лота, сжатый воздух и газы (азот, кислород, водород, аргон, оксид, углерода и др.), генераторный газ, коксовый газ, сланцевый газ, газ нефтепереработки, биогаз и некоторые другие (например, жидкое топливо, получаемое из низкокачественных углей);

побочные (вторичные) энергоресурсы: горючие производственные и непроизводственные отходы (твердые, жидкие, газообразные); тепловые отходы (преимущественно жидкие и газообразные); избыточное давление продуктов и промежуточных продуктов (переделов).

Мировые запасы топливно-энергетических ресурсов. Учет мировых запасов топливно-энергетических ресурсов и перспективы их использования представляют собой глобальную проблему, постоянно заботящую мировую научную общественность. Европейское объединение независимых экспертов «Римский клуб», готовит периодические доклады о путях развития человечества, где существенное место занимают топливноэнергетические вопросы. Так, в 70-е годы XX в. в связи с энергетическим кризисом 1972 г. общие мировые запасы органических топлив с учетом экономически оправданной извлекаемости оценивались (с округлением) всего в 1 трл.т (в условном исчислении). Если принять за основу перспективных расчетов тенденции прошлого — удвоение суммарного мирового энергопотребления каждые 20 лет, то при потреблении в 2000 и последующих годах (при стабилизации потребления) по 20 млрд, т этих запасов должно было бы хватить всего на 50 лет, т. е., считая от 1980 г., только до 2030 г.

Следует отметить, что аналогичные опасения возникали у человечества также в начале XX века, когда прогнозировалась исчерпаемость топливных запасов (преимущественно угля) к 60-м годам. Однако тогда мировая энергетика находилась на другом, значительно более низком уровне развития и соответственно значительно хуже были исследованы топливные месторождения, а некоторые из них вообще еще не были открыты. Тогда мировая общественность впервые задумалась о поиске новых видов энергии для будущего удовлетворения своих постоянно растущих потребностей. Именно тогда были предложены многие из известных сегодня альтернативных, так называемых «возобновляемых» видов энергии: солнечная, геотермальная, энергия ветра, приливов и отливов, движения волн, разница термического потенциала поверхности и глубин мирового океана и многое другое.

При дополнительных исследованиях и уточнениях после 1980 г. во время своеобразной «инвентаризации» мировых запасов цифры стали более оптимистичными — природного органического топлива должно хватить на весь XXI в. Однако все эти прогнозы, как и в начале века, дали ощутимый толчок к поиску возобновляемых энергоресурсов, альтернативных органическому топливу.

По данным ЮНЕСКО в недрах Земли содержится 1016 т (1010 Гига-тонн — Гт; 1 Гт = 1 млн. т) ископаемого углерода. К сожалению, не весь он легко или рентабельно добываем.

Уголь является после дров самым широко применяемым видом природного органического топлива. Известные, доступные для разработки, запасы угля оцениваются в 600 Гт (примерно в 4 раза больше добытого). Возможно, что запасы угля на Земле достигают 10 000Гт. Предполагается, что 2500 Гт из них доступны для разработки.

Нефть, по оценкам ЮНЕСКО, использована примерно на 1/3 от уровня и доступных для разработки мировых запасов. Доказанные запасы составляют 884 Гт, однако в конечном счете пригодными для добычи могут оказаться около 300 Гт. В последние годы открываются или уточняются по запасам месторождения нефти общим объемом около 5 Гт ежегодно, т.е. больше, за год. Предполагается, что в настоящее время достигнут максимум добычи нефти, после чего ее мировое производство и потребление начнут снижаться.

Природный газ к настоящему использован примерно на 40 % его известных запасов, около 590 Гт, причем его извлекаемость больше, чем у нефти, и составить также примерно 300 Гт. Максимум производства и потребления ожидается в 2010 г., когда его потребление в 3- раза превысит существующее.

Горючие сланцы и битуминозные пески — наименее эффективные виды ископаемого органического топлива. Из них, правило, добывается нефть, причем значительная часть добываемого сырья составляет пустая порода. Так, в бывшем СССР ежегодно перерабатывалось 35 млн. тонн сланцев, из которых извлекалось около 12 т нефти.

Доказанные на по оценкам 70—80-х годов XX в. составляют примерно 900 млрд. т в пересчете на угольный эквивалент (с теплотой сгорания 6000 ккал/кг). В числе: уголь — 600 млрд.т, нефть — 200 млрд.т, газ — 100 млрд.т; потребление энергии в год — 5 млрд.т. Позже мировые запасы несколько переоценены, и современные цифры, особенно по запасам угля, существенно выше.

Среди возобновляемых источников энергии наиболее существенными признаются следующие.

Геотермальная энергия. Каждый квадратный метр поверхности Земли постоянно излучает около 0,06 Вт—слишком малая величина, чтобы ее мог ощутить человек. Однако в целом планета ежегодно теряет около 2,8- 1014 кВт ч. При таких темпах Земля должна бы остыть до температуры космического пространства через 200 млн. лет. Но тот факт, что Земле уже 4,5 млрд. лет, означает, что энергия поступает изнутри нее, и именно от нагрева в результате радиоактивного распада определенных изотопов в горных породах земной коры, находящихся порой на значительной глубине. Известно понятие геотермический градиент: температура земных недр возрастает на 30°С с увеличением глубины на 1 километр. В некоторых районах геотермическая активность усиливает этот эффект и температура может повышаться до 80°/км. Однако пар геотермального происхождения имеет температуру выше 300 °С, что ограничивает эффективность его использования. Таким образом, геотермальная энергия — это фактически разновидность ядерной энергии.

В настоящее время действует около 20 геотермальных электростанций мощностью от нескольких МВт до 500 МВт каждая. Их общая мощность около 1,5 ГВт (1 ГВт = 103 МВт = 106 кВт). В среднем одна буровая скважина, пробуренная на нужную глубину (от сотен метров до километра в зависимости от характера земной коры), может дать около 5 MВт, и срок ее действия—10 — 20 лет.

Приливные волны Мирового океана несут около 3 ТВт знергии (1 ТВт = 1012Вт= 109кВт= 106 МВт = 103 ГВт). Однако ее получение рентабельно лишь в нескольких районах планеты, где приливы особенно высоки, например, в некоторых районах Ла-Манша и Ирландского моря вдоль побережья Северной Америки и Австралии и на отдельных участках Белого и Баренцева морей.

По техническим причинам приливные станции работают лишь на 25 % своей нормативной мощности, так что из общего потенциала 80 ГВт может быть использовано лишь 20 ГВт. Несколько лет действует одна из самых крупных приливных электростанций близ Ла-Ранс (Франция) проектной мощностью 240 МВт, которая при довольно небольших затратах производит 60 МВт.

Волны Мирового океана содержат еще около 3 ТВт энергии. Обычная волна в Северном море несет 40 кВт энергии на каждый метр длины на протяжении 30 % времени своего существования и около 10 кВ на метр в течение 70 % времени. Расчетные данные о том, какую энергию можно получить от волн, сильно расходятся. Согласно одним — это 100 ГВт во всем мире, по другим — 120 ГВт можно получить лишь у берегов Англии. Несколько экспериментальных прототипов волновых энергетических установок построено в Англии и Японии.

Дующие на Земле ветры обладают энергией в 2700 ТВт, но лишь 1/4 часть их находится на высоте до 100 метров над поверхностью Земли. Если на всех континентах построить ветряные установки, беря в расчет только поверхность суши и учитывая неизбежные потери, то это может дать максимум 40 ТВт. Однако даже 1/10 часть этой энергии превышает весь гидроэнергетический потенциал. При использовании энергии ветра человечество столкнулось с неожиданными проблемами. В США на побережье Флориды были сооружены мощные ветряки с диаметром лопастей свыше 3-х метров. Оказалось, что эти установки генерируют довольно мощное излучение неслышимого инфразвука, который, во-первых удручающе действует на человеческую психику, а во-вторых, резонирует естественные колебания таким образом, что на расстоянии нескольких километров дрожат и лопаются стекла в домах, стеклянная посуда, люстры и т.п. Изменение (уменьшение) диаметра ветряных установок пока не дало положительных результатов, так что дальнейшее сооружение подобных генераторов является проблематичным.

Гидроэнергия. На Земле имеется 1018 т воды, однако лишь 1/2000 часть ее ежегодно вовлекается в круговорот, испаряясь и вновь выпадая на поверхность в виде дождя и снега. Но даже эта ничтожная доля составляет 500 000 км3 воды. Ежегодно из океанов испаряется 430 000 и с суши 70 000 км3 воды. Из них 390 000 км3 воды выпадает в виде осадков обратно в океаны и 110 000 — на сушу. Таким образом, ежегодно 40 000 км3 воды стекает с континентов в океаны. Средняя высота континентов — 80 м.

Легко подсчитать, что общая потенциальная гидроэнергия на земном шаре составляет 10 Твт (примерно нынешний объем общемирового потребления), около 15 % может быть рентабельно использовано, что дает потенциал 1,5 Твт.

Энергетический потенциал гидроресурсов, использовать который экономически целесообразно, в России составляет порядка 1 трлн. кВт ч/год, в том числе на больших и средних реках около 850 млрд. кВт.ч/год. По этому показателю мы занимаем второе место в мире после Китая (табл. 2.1).

Таблица 2.1. Использование гидроэнергетического потенциала

Страна Экономический гидроэнергетический потенциал, млрд. кВт.ч/год Выработка электроэнергии на ГЭС, млрд. кВт.ч/год Доля использованного экономического потенциала
Китай 92,0 7,0
США 330,0 46,8
Бразилия 165,4 25,2
Канада 304,3 56,9
Индия 51,0 27,6
Япония 91,5 69,3
Норвегия 106,5 81,9
Швеция 64,9 76,4
Франция 71,6 89,5
Италия 44,5 70,6
Россия 160,1 18,8

 

Тепловая энергия океанов. мировой океан поглощает 70% солнечной энергии, падающей на Землю. В океанских течениях заключено 5—8 Твт энергии. Перепад температур между холодными водами на глубине несколько сот метров и теплыми водами на поверхности океана представляет собой огромный источник энергии, оцениваемый в 20—40 тыс.ТВт, из которых практически могут быть освоены лишь 4 ТВт.

Солнечная энергия. Энергетическая отдача Солнца равнозначна сжиганию или превращению в энергию массы в количестве 4,2-106 т/с. Учитывая, что общая масса Солнца составляет 22 • 1026 т, можно подсчитать, что Солнце будет продолжать выделять энергию еще в течение 2000 млрд. лет. Земля, находящаяся от Солнца на расстоянии 150 млн. км, получает приблизительно 2 миллиардные доли общего излучения Солнца. Общее количество энергии Солнца, достигающей поверхности Земли за год, в 50 раз превышает всю ту энергию, которую можно получить из доказанных запасов ископаемого топлива, и в 35 000 раз превышает нынешнее ежегодное потребление энергии в мире. Из общего количества энергии отражение от поверхности Земли — 5 %, отражение облаками — 20 %, поглощение самой атмосферой — 25 %, рассеивается в атмосфере, но достигает земли — 23 %, достигает земли непосредственно 27%, всего на поверхности Земли — 50 %. Среднее количество солнечной энергии, попадающей в атмосферу Земли, 1,353 кВт/м2 или 178000 ТВт. Гораздо меньшее ее количество достигает поверхности Земли, а доля, которую можно использовать, еще меньше. Среднегодовая цифра составляет 10 000 ТВт, что примерно в 1000 раз превышает нынешнее потребление энергии в мире. Максимальное солнечное облучение достигает 1 кВт/м2, но это длится лишь в течение 1—2 ч в разгар летнего дня. В большинстве районов мира среднее облучение солнечным светом составляет порядка 200 Вт/м2.

Один из методов получения солнечной энергии заключается в нагреве парового котла турбины с помощью системы зеркал, собирающих солнечный свет. Солнечная электростанция мощностью 10 МВт потребует около 2000 рефлекторов площадью по 25 м2 каждый. Другой путь — использование фотоэлементов, которые непосредственно преобразуют солнечную энергию в электричество, обычно с КПД 10—15 %. Небольшие установки мощностью 250—1000 кВт существуют, однако они дороги из-за высокой стоимости фотоэлементов. При массовом производстве таких установок есть надежда сократить затраты до уровня, при котором станет осуществимой электрификация изолированных поселений с помощью фотоэлементных установок.

Солнечное топливо. Около 90 % солнечной энергии, накопленной на поверхности Земли, сосредоточено в растениях. Общее количество такой энергии — около 635 ТВт-лет, что примерно равно количеству энергии, содержащейся в наших запасах угля.

Однако сегодня для энергетического использования низкокалорийного древесного и древовидного топлива нецелесообразно его прямое сжигание. На базе низкокачественной древесины, древесных отходов, горючего мусора, фекальных стоков и отбросов цивилизации возникла и развивается биоэнергетика, позволяющая с помощью бактерий, в том числе анаэробных, перерабатывать органическую массу в топливо, преимущественно — в метан.

Оценивая современное и перспективное использование нетрадиционных источников энергии, мировая научная общественность сходится на следующих цифрах (табл. 2.2).

Таблица 2.2. Современное и прогнозируемое использование и возобновляемых источников энергии в мире,млрд. кВт.ч

Источник Современное использование Начало ХХI в.
Солнце 2-3 2000-5000
Геотермальная энергия 1000-5000
Ветер 1000-5000
Приливы 0,4 3-60
Энергия волн
Тепловая энергия океанов
Биомасса 550-700 2000-5000
Древесное топливо 10 000-12 000 15 000-20 000
Древесный уголь 2000-5000
Торф
Тягловые животные 30 (в Индии)
Горючие сланцы
Битуминозные пески
Гидроэнергия
Итого (округленно): 12 000- 13 000 30 000-53 000

Общая картина добычи и производства различных видов первичной энергии и энергетических ресурсов в будущем приведена в табл. 2.3.

Таблица 2.3. Варианты производства первичной энергии в мире в 1975—2030 гг.,ТВт — год в год.




Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2019 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных