![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Производство технического углеродаТехнический углерод - сажа - является, в отличие от нефтяного кокса и пироуглерода, особой дисперсной формой углерода, получаемого при более высокотемпературном, по сравнению с коксованием и пиролизом, термолизе углеводородного сырья (1200 - 2000 °С). Основными потребителями сажи являются шинная и резино-техническая промышленности (более 90 % от всего объема производства саж). Сажа находит применение также в производствах пластмасс, в электротехнической, лакокрасочной, полиграфической и ряде других отраслей промышленности. В качестве сырья используют наиболее широко нефтяной термогазойль, а также антраценовое масло, хризеновую фракцию и пековый дистиллят - продукты коксохимии. Некоторые марки саж получают из газового сырья. Жидкое сажевое сырье представляет собой углеводородные фракции, выкипающие при температуре выше 200 °С и содержащие значительное количество ароматических углеводородов (60 - 90 % масс). Наиболее важным показателем качества саж является дисперсность, используемая при их маркировке. Дисперсными принято называть материалы, состоящие из весьма малых частиц коллоидных (10-1000 А) или близких к ним размеров. Размеры сажевых частиц лежат в пределах от нескольких сотен до нескольких тысяч А, то есть в пределах размеров коллоидных частиц, поэтому сажу иногда называют «коллоидным углеродом». Более дисперсным материалам соответствуют меньший диаметр частиц и более высокие значения удельной поверхности (S). Из частиц сажи формируются агломераты - рыхлые цепные образования разветвленной структуры (подобные снегу). Линейные размеры агломератов сажи могут достигать нескольких микрон (0,2 - 0,8 мкм). По строению агломератов и плотности упаковки в них частиц судят о структурности сажи. В производственных условиях ее оценивают по маслоемкости - масляному числу (чем оно больше, тем выше структурность, размеры и рыхлость агломератов сажи). Принятая в нашей стране маркировка саж основана на способе их производства, виде используемого сырья и величине удельной поверхности. Первая буква марки саж указывает на способ производства: П - печная, Т - термическая, Д - диффузионная; следующая буква означает сырье: М - жидкое (масло), Г - газовое; цифры указывают величину удельной поверхности. Например, сажа марки ПМ-100 означает, что она получена печным способом из жидкого сырья, имеет удельную поверхность 100 м2/г. По влиянию на прочностные свойства и износостойкость резин сажи делятся на активные (S > 65 м2/г), полуактивные (S = 30-50 м2/г) и малоактивные (S < 25 м2/г). Наиболее массовые марки саж, применяемые при изготовлении шин и резинотехнических изделий - печные сажи, получаемые из термогазойля, следующих марок: ПМ-30; ПМ-50; ПМ-75 и ПМ-100. Кроме дисперсности и структурности, о качестве саж судят по таким показателям, как адсорбционная способность, содержание летучих, серы, зольность и др. Для некоторых марок оценивают показатели тепло-электрофизических свойств, содержание частиц кокса (грита) и др. Образование сажи происходит при температурах более 1200°С. Выход сажи возрастает с увеличением температуры термолиза и парциального давления углеводорода. Различные углеводороды в разной степени склонны к образованию сажи. Наиболее высокий выход с высокой дисперсностью обеспечивают высокоароматизиро-ванные дистиллятные виды сырья с высокой плотностью и высоким индексом корреляции. Единой теории и общепринятых представлений о механизме са-жеобразования до настоящего времени нет. Большинство исследователей считает, что этот процесс имеет радикальную природу. Первичным актом сажеобразования считается образование радикала-зародыша. При его взаимодействии с молекулами исходного сырья могут образоваться новые радикалы. По мере роста активность укрупненных радикалов уменьшается и в некоторый момент радикал-зародыш теряет свойства радикала, приобретает свойства физической поверхности и превращается в минимально возможную сажевую дисперсную частицу. Принципиальная технологическая схема печной активной сажи представлена на рис.7. 11. Основной аппарат процесса - циклонный реактор, в котором осуществляются следующие три процесса: 1.сгорание топлива (или части сырья) и создание требуемой температуры; 2.разложение сырья с образованием сажи; 3.охлаждение сажегазовой смеси с предотвращением побочных процессов. Осушенное и подогретое в теплообменниках до 100—120 °С сырье проходит через змеевик беспламенного подогревателя 1, где нагревается до 270 -320 °С, и затем через фильтры тонкой очистки сырья 2 для удаления кокса, образующегося при нагревании сырья в печи. Подогретое и очищенное сырье направляется к сырьевым форсункам циклонного реактора 3. На технологическом потоке установлено восемь реакторов мощностью 500 кг/ч по сырью, из которых 5-7 работают, остальные находятся в ремонте или резерве. Иногда устанавливают 3 реактора повышенной производительности (до 1500 кг/ч сырья): два в работе, один в резерве. В реактор подается сырье под давлением 0,8 МПа, сжатый воздух высокого давления (ВВД) для распыления сырья под давлением 0,5 - 0,7 МПа, который подогревается в подогревателе 1. Для поддержания в реакторе рабочей температуры в него подаются топливо и воздух низкого давления (ВНД), нагретый до 300 - 400 °С в воздухоподогревателе. Процесс в реакторе протекает при температуре 1250-1550 °С в зависимости от марки сажи и длится сотые доли секунды. Для прекращения реакции в определенную точку реактора впрыскивается химочищенная вода. Охлажденная до 650 - 700 °С сажегазо-вая смесь поступает из реактора в воздухоподогреватель, затем в холодильник-ороситель 4. Сначала охлажденная водой до 280 °С сажегазо-вая смесь направляется в систему улавливания сажи, состоящую из последовательно установленных (четырех) циклонов 5 и восьмисекцион-ного рукавного фильтра 6. Сажа, уловленная в цикланах, направляется на гранулирование. Газы из фильтров подаются на установку дожига. Выход сажи, в зависимости от качества используемого сырья, изменяется в пределах 42-60 % масс, на сырье.
Осушенное и подогретое в теплообменниках до 100—120 °С сырье проходит через змеевик беспламенного подогревателя 1, где нагревается до 270 -320 °С, и затем через фильтры тонкой очистки сырья 2 для удаления кокса, образующегося при нагревании сырья в печи. Подогретое и очищенное сырье направляется к сырьевым форсункам циклонного реактора 3. На технологическом потоке установлено восемь реакторов мощностью 500 кг/ч по сырью, из которых 5-7 работают, остальные находятся в ремонте или резерве. Иногда устанавливают 3 реактора повышенной производительности (до 1500 кг/ч сырья): два в работе, один в резерве. В реактор подается сырье под давлением 0,8 МПа, сжатый воздух высокого давления (ВВД) для распыления сырья под давлением 0,5 - 0,7 МПа, который подогревается в подогревателе 1. Для поддержания в реакторе рабочей температуры в него подаются топливо и воздух низкого давления (ВНД), нагретый до 300 - 400 °С в воздухоподогревателе. Процесс в реакторе протекает при температуре 1250-1550 °С в зависимости от марки сажи и длится сотые доли секунды. Для прекращения реакции в определенную точку реактора впрыскивается химочищенная вода. Охлажденная до 650 - 700 °С сажегазо-вая смесь поступает из реактора в воздухоподогреватель, затем в холодильник-ороситель 4. Сначала охлажденная водой до 280 °С сажегазо-вая смесь направляется в систему улавливания сажи, состоящую из последовательно установленных (четырех) циклонов 5 и восьмисекцион-ного рукавного фильтра 6. Сажа, уловленная в цикланах, направляется на гранулирование. Газы из фильтров подаются на установку дожига. Выход сажи, в зависимости от качества используемого сырья, изменяется в пределах 42-60 % масс, на сырье. 7.3.8. Производство нефтяных битумов Нефтяные битумы представляют собой жидкие, полутвердые или твердые нефтепродукты, состоящие из асфальтенов, смол и масел (мальтенов): асфальтены придают твердость и высокую температуру размягчения; смолы повышают цементирующие свойства и эластичность; масла являются разжижающей средой, в которой растворяются смолы, набухают асфальтены. Области применения нефтяных битумов, их марки и требования к их качеству приведены в § 4.6.1. Битумы характеризуются следующими показателями: твердостью (пенетрацией), температурой размягчения, растяжимостью в нить (дуктильностью), температурой хрупкости, адгезией, температурой вспышки, реологическими свойствами и др. Пенетрация характеризует глубину проникания в битумы стандартной иглы при определенных условиях (при 25 °С, нагрузке 1000 Н, прилагаемой в течение 5 с). Она составляет (40-60)х 0,1 мм. Температура размягчения, определяемая по методу «кольцо в шар» (КиШ), колеблется от 25 до 150 °С. Растяжимость (дуктильность-) битума характеризуется расстоянием, на которое его образец можно вытянуть при определенных условиях в нить до разрыва. Температура хрупкости - это температура, при которой пленка битума, нанесенная на стальную пластинку, дает трещину при изгибе этой пластинки (от - 2 до -30 °С). Чем ниже эта температура, тем выше качество битума. Окисленные битумы имеют меньшую температуру хрупкости, чем остаточные битумы той же пенетрации. Вязкость битумов наиболее полно характеризует их консистенцию при различных температурах применения. При максимальной температуре применения вязкость должна быть как можно выше. Адгезию (прилипание^ оценивают по степени покрытия битумом поверхности частиц щебня или гравия после обработки образца в кипящей воде. Адгезионная способность битума зависит от его химического состава: в присутствии парафина она снижается, поэтому его содержание ограничивается (не более 5 %). С повышением молекулярной массы асфальтенов, входящих в состав битума, адгезионные его свойства улучшаются. Для производства нефтяных битумов используют следующие три основных способа: 1. Концентрирование ТНО путем их перегонки под вакуумом (остаточные битумы). 2. Окисление кислородом воздуха различных ТНО (окисленные битумы). 3. Компаундирование остаточных и окисленных битумов и различных ТНО (компаундированные битумы). Битумы вырабатываются в основном из тяжелых нефтяных остатков: гудронов, мазутов тяжелых нефтей, асфальтов деасфальтизации, крекинг-остатков и др. Оптимальным сырьем для производства битумов являются остатки из асфальто-смолистых нефтей нафтенового или нафтено-ароматического основания. Чем выше в нефти отношение ас-фальтенов к смолам и ниже содержание твердых парафинов, тем лучше качество получаемых из них битумов и проще технология их производства. Нефти, из остатков которых вырабатывают битумы, должны быть хорошо обессолены. Наличие сернистых и других гетеросоедине-ний в сырье не ухудшает товарных свойств битумов. При окислении ТНО часть масел превращается в смолы, часть смол переходит в асфальтены. В результате количество смол практически остается неизменным, а отношение А/С и (А+С)/М приближается к оптимальным значениям. Наибольшее распространение получило производство окисленных битумов. Технология окисления битумного сырья. Основными факторами процесса окисления (точнее, окислительной дегидроконденсации) являются температура, расход воздуха и давление. Чем выше температура окисления, тем быстрее протекает процесс. Но при слишком высокой температуре ускоряются реакции образования карбенов и карбоидов, что недопустимо. Чем больше вводится в зону воздуха, тем меньше времени требуется для окисления (то есть кислород является инициатором процесса). При слишком большой подаче воздуха температура в реакционной зоне может подняться выше допустимой. Так как реакция окисления экзотермическая, то изменением расхода воздуха можно регулировать температуру процесса. С повышением давления в зоне реакции процесс окисления интенсифицируется и качество окисленных битумов улучшается благодаря конденсации части масляных паров. В частности, повышается пенетрация битума при одинаковой температуре его размягчения. Обычно давление колеблется от 0,3 до 0,8 МПа. Основным аппаратом установок непрерывного действия для производства битума является либо трубчатый реактор, либо окислительная колонна. Окислительные колонны предпочтительны для производства дорожных битумов, трубчатые реакторы - в производстве строительных битумов. Отдельные установки в своем составе имеют оба аппарата. Ниже, на рис.7.12, представлена принципиальная технологическая схема битумной установки (одного блока) с реакторами обоих типов. Если исходное сырье поступает из резервуаров, то для его нагрева на установке имеются теплообменники и трубчатая печь 1. Если же оно поступает в горячем виде непосредственно с АВТ, тогда сырье вводят в реакторы, минуя теплообменники и печи. В реактор колонного типа 6 вводят непрерывно сырье (с температурой 140 - 200 °С), сжатый воздух и битум-рециркулят. На верх колонны для регулирования температурного режима и для понижения концентрации кислорода подают водяной пар и воду. Окисление сырья в колонне осуществляется в барботажном режиме при температуре 240 - 270 °С.
Поток сырья, направляемый в реакторы змеевикового типа, сначала поступает с температурой 260 - 270° С в смеситель 2, где смешивается со сжатым воздухом и битумом-рецир-кулятом, затем в змеевиковый реактор 3. Процесс окисления сырья кислородом воздуха начинается в смесителе 2 в пенном режиме и продолжается в змеевике реактора 3. Для съема тепла экзотермической реакции окисления в межтрубное пространство реактора 3 вентилято- ром подается воздух. Смесь продуктов окисления из реактора 3 поступает в испаритель 4, в котором газы отделяются от жидкости. Отработанный воздух, газообразные продукты окисления, пары нефтепродуктов и воды направляются через конденсаторы-холодильники (воздушного охлаждения) в сепаратор 5. С верха сепаратора нескон-денсировавшиеся газы и пары направляются в печи дожига. Конденсат, так называемый «черный соляр», используется как компонент котельного топлива. Целевой продукт установки - битум - после охлаждения направляется в приемники - битумораздаточники. Выход дорожных окисленных битумов на сырье составляет около 98 % масс, а строительных - 94 - 96 % масс. Комбинированное применение на одной битумной установке реакторов 2-х типов позволяет одновременно получить разные марки битумов, более полно использовать тепло реакции и отходящих потоков. На некоторых НПЗ эксплуатируются установки, в которых применено последовательное комбинирование реакторов: сырье сначала окисляется в реакторе колонного типа, затем частично окисленный битум доокисляется в реакторе змеевикового типа. 7.3.9. Установка непрерывного коксования в псевдоожиженном слое порошкообразного кокса (термоконтактного коксования) В отличие от замедленного коксования термоконтактное коксование (ТКК) является непрерывным, высокопроизводительным, технологически более универсальным процессом, позволяющим перерабатывать исключительно разнообразные нефтяные остатки, такие, как мазуты, гудроны, асфальты, природные битумы (даже угольные суспензии) с плотностью 0,94-1,2 г/см3 и коксуемостью 7 - 50 % масс. Целевым назначением процесса ТКК является получение из нефтяных остатков дистиллятных продуктов, направляемых на последующую каталитическую переработку в высококачественные моторные топлива. Порошкообразный кокс ТКК является по сравнению с коксом ЗК побочным, малоценным продуктом, не пригодным для изготовления анодных и графитированных изделий, что является существенным недостатком, ограничивающим более широкое распространение этого процесса в мировой нефтепереработке.
Процесс ТКК был разработан в послевоенные годы (1947-1954 гг.) одновременно в США (фирмой «Стандарт Ойл Девелопмент» под названием «Флюидкокинг») и бывшем СССР (МИНХ и ГП, ВНИИ НП и АзНИИ). В настоящее время в эксплуатации на НПЗ США, Канады, Японии, Мексики, Венесуэлы и Голландии находятся около 20 установок «Флюидкокинг». Разработан проект отечественной промышленной установки ТКК, однако этот процесс до сих пор не внедрен на НПЗ нашей страны. Установка ТКК состоит из реакторного блока и блока разделения газообразных и жидких продуктов коксования. Реакторный блок установки ТКК (рис. 7.13) включает в себя реактор 1 с парциальным конденсатором 2 (скруббером), коксонагреватель 3 с сепаратором-холодильником 4. Сырье, нагретое до 260-360 °С, вводят через систему форсунок в псевдоожиженный слой частиц кокса (диаметром 40-1000 мкм), непрерывно циркулирующего между реактором и коксонагревателем, выполняющего функции теплоносителя и контакта, на поверхности которого отлагается образующийся кокс. Форсунки размещаются по окружности и высоте слоя в несколько ярусов, на крупных установках их число достигает 100. Температура псевдоожиженного слоя в реакторе 500-560 °С. При этой температуре даже очень тяжелое сырье имеет низкую вязкость и благодаря интенсивному перемешиванию равномерно покрывает поверхность микросферического кокса. Физического тепла нагретых в кок-сонагревателе коксовых частиц достаточно для испарения части сырья и осуществления эндотермических реакций крекинга остального сырья, остающегося в виде жидкой пленки на коксовых микросферах. Летучие продукты реакций коксования удаляются, оставляя на поверхности коксовых частиц тонкий, всего в несколько микрон слой кокса. Цикличность процесса коксообразования и выжига части кокса обусловливает образование порошкообразного кокса слоистой структуры с низкой пористостью и высокой плотностью. Пары и газы продуктов коксования, покидающие псевдоожижен-ный слой, проходят через циклонные сепараторы, где улавливается основная часть коксовой пыли, и поступают в скруббер-парциальный конденсатор 2. На верх скруббера в качестве орошения подается охлажденный тяжелый газойль. За счет контакта паров продукта с рециркулятом конденсируются наиболее тяжелые компоненты паров и улавливается коксовая пыль, не задержанная в циклонах, которые в виде шлама возвращаются в реактор. Продукты ТКК далее разделяют на газ, бензиновую фракцию (н.к. - 160 °С или н.к. -220 °С), легкий газойль (с температурой конца кипения 350-370 °С) и тяжелый газойль (с концом кипения 500-565 °С). Коксовый теплоноситель выводят через нижнюю отпарную секцию реактора, оборудованную 7-10 рядами отбойных элементов, обеспечивающих равномерное распределение и улучшающих контактирование потоков водяного пара, подаваемого на отпарку, и выводимого кокса. Водяной пар одновременно выполняет функцию псевдоожижающего агента. Транспорт кокса из реактора в коксо-нагреватель и обратно осуществляют также подачей водяного пара в соответствующие коксопроводы. Нагрев кокса до заданной температуры (600-620 °С) осуществляется в коксонагревателе 3 за счет теплоты сгорания части кокса. Дымовые газы, покидающие псевдоожиженный слой, проходят двухступенчатые циклоны, где от них отделяется и возвращается в слой коксовая пыль, затем поступают в котел-утилизатор (на схеме не показан). Поскольку количество сжигаемого кокса меньше вновь образуемого, то избыток его в виде фракции более крупных частиц непрерывно выводят из системы через сепаратор-холодильник 4, где менее крупные частицы возвращаются в коксонагреватель. На основании экспериментальных исследований ТКК нефтяных остатков коксуемостью 12^47 % получены (Д.М. Соскиндем) следующие зависимости выхода продуктов (у;) от коксуемости сырья К (при получении тяжелого газойля с к.к. 500 °С): кокс газ (до С4) бензин (Cj-160 °С) легкий газойль (160-350 °С) у,= 0,81 + U1K, у2= 12,61+0,02К, у, = 16,65-0,21 К, у4= 22,93-0,17К. По качеству газы и дистиллятные фракции процесса ТКК близки аналогичным продуктам замедленного коксования. Жидкие продукты ТКК, содержащие значительное количество непредельных соединений, ароматических углеводородов, серы и азота, обычно подвергают гидрогенизационной обработке на установках гидроочистки со стационарным слоем катализатора. Во многих случаях такую обработку осуществляют в смеси с прямогонными фракциями, полученными на том же НПЗ. Бензины ТКК часто в смеси с газойлем используют как сырье каталитического крекинга (тритинг-процесс). Тяжелый газойль после гидроочистки, как правило, направляют вместе с прямогонным вакуумным газойлем на каталитический крекинг. Кокс ТКК может использоваться как энергетическое топливо или подвергаться газификации с получением низкокалорийного топливного газа или технологических газов (водорода или смеси водорода и оксида углерода). В последние годы за. рубежом получают применение процессы ТКК, совмещенные с газификацией (парокислородовоздуш-ной) порошкообразного кокса, получившие название «Флексикокинг». Вопросы 1. Перечислите типы термических процессов в современной неф- 2. Как рассчитывают равновесие химических реакций? 3. Какова зависимость термостабильности углеводородов от их молекулярной массы и давления? 4. Сформулируйте правило Ле-Шателье. 5. Какова температурная зависимость константы равновесия для эндо- и экзотермической реакций? 6. Объясните влияние давления для реакций, протекающих с изменением объема. 7. Влияет ли давление на равновесие реакций изомеризации и циклизации? 8. Как влияют давление и температура на равновесие следующих реакций: 1) дегидрирования; 2)гидрирования; 3)гидрокре-кинга; 4) дегидроциклизации; 5) поликонденсации; 6) пиролиза; 7) синтеза Фишера-Тропша? 9. Как влияет катализатор на равновесие химических реакций? 10. Какова зависимость энергии разрыва С-С, С-Н и C-S связей от их местоположения, структуры и молекулярной массы углеводородов? 11. Что за наука химическая кинетика? Дайте классификацию химических реакций. 12. Дайте определение для сложности реакций. Приведите пример составления стехиометрических уравнений для сложных реакций. 13. Дайте определение понятиям концентрация веществ и степень превращения для сложных реакций, протекающих с изменением объема. 14. Какова взаимосвязь между концентрацией и степенью превращения для сложных реакций? 15. Дайте определение для скорости сложных реакций, приведите формулы ее расчета применительно к проточным реакторам и реакторам идеального перемешивания. 16. Напишите кинетические уравнения химических реакций в соответствии с законом действующих масс. 17. Напишите кинетические уравнения зависимости константы скорости реакций от температуры. 18. Можете ли Вы вывести формальное кинетическое уравнение для простых и сложных реакций? 19. Приведите график зависимости концентраций реагирующих веществ для простых и сложных реакций. 20. По какому механизму протекают реакции термолиза нефтяного сырья? 21. Укажите свойства и основные типы реакций радикалов.
22. Дайте определение для цепных реакций. Составьте систему радикально-цепных реакций применительно к пиролизу нормального пентана. 23. Сможете ли вывести кинетическое уравнение для цепных реакций пиролиза этана? 24. Укажите основные закономерности по химизму газофазного термолиза различных классов углеводородов. 25. Дайте краткую характеристику сырью термодеструктивных процессов. 26. Укажите основные закономерности жидкофазного термолиза нефтяных остатков. 27. Каково влияние качества сырья на процесс термолиза нефтяных остатков? 28. Как влияют температура и давление на процесс термолиза нефтяных остатков? 29. Каковы целевое назначение термокрекинга дистиллятного сырья (ТК ДС) и требования к термогазойлю? 30. Приведите принципиальную технологическую схему процесса ТК ДС и укажите технологические параметры в аппаратах. 31. Каковы целевое назначение и разновидности процесса висбрекинга. 32. Приведите принципиальную технологическую схему установки висбрекинга гудрона, ее режимные параметры и материальный баланс. 33. Каковы целевое назначение, разновидности установок замедленного коксования (УЗК) и области применения нефтяных коксов? 34. Приведите принципиальную технологическую схему УЗК, ее режимные параметры и материальный баланс. 35. Укажите особенности технологии производства игольчатого кокса. 36. Укажите области и технологию применения нефтяных пеков и основные требования к их качеству. 37. Каково целевое назначение и сырье процессов пиролиза?
38. Объясните влияние технологических параметров пиролиза на выход олефинов. 39. Приведите принципиальную технологическую схему установки пиролиза, ее режимные параметры и материальный баланс. 40. Каковы требования к качеству термогазойля и техническому углероду (саже)? Перечислите марки саж. 41. Приведите принципиальную технологическую схему производства активной сажи, его технологические параметры и материальный баланс. 42. Дайте краткую характеристику качеству нефтяных битумов. Перечислите способы их производства. 43. Приведите принципиальную технологическую схему битумной установки, ее технологический режим и материальный баланс. 44. Каковы целевое назначение, достоинства и недостатки про Глава 8 Не нашли, что искали? Воспользуйтесь поиском:
|