ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Каталитические процессы гидрокрекинга нефтяного сырьяГидрокрекинг - каталитический процесс переработки нефтяных дистиллятов и остатков при умеренных температурах и повышенных давлениях водорода на полифункциональных катализаторах, обладающих гидрирующими и кислотными свойствами (а в процессах селективного гидрокрекинга - и ситовым эффектом). Гидрокрекинг позволяет получать с высокими выходами широкий ассортимент высококачественных нефтепродуктов (сжиженных газов С3 - С4, бензина, реактивного и дизельного топлив, компонентов масел) практически из любого нефтяного сырья путем подбора соответствующих катализаторов и технологических условий, является одним из экономически эффективных, гибких и наиболее углубляющих нефтепереработку процессов. В современной нефтепереработке реализованы следующие типы промышленных процессов гидрокрекинга: 1) гидрокрекинг бензиновых фракций с целью получения легких изопарафиновых углеводородов, представляющих собой ценное сырье для производства синтетического каучука, высокооктановых добавок к автомобильным бензинам; 2) селективный гидрокрекинг бензинов с целью повышения октанового числа, реактивных и дизельных топлив с целью понижения температуры их застывания; 3) гидродеароматизация прямогонных керосиновых фракций и газойлей каталитического крекинга с целью снижения содержания в них ароматических углеводородов; 4) легкий гидрокрекинг вакуумных газойлей с целью облагораживания сырья каталитического крекинга с одновременным получением дизельных фракций; 5) гидрокрекинг вакуумных дистиллятов с целью получения моторных топлив и основы высокоиндексных масел; 6) гидрокрекинг нефтяных остатков с целью получения моторных топлив, смазочных масел, малосернистых котельных топлив и сырья для каталитического крекинга. 10.5.1. Особенность химизма и механизма реакций гидрокрекинга. Катализаторы процесса Гидрокрекинг можно рассматривать как совмещенный процесс, в котором одновременно осуществляются реакции как гидрогеноли-за (то есть разрыв связей С -S, С -N и С -О) и дегидро-гидрирова-ния, так и крекинга (то есть разрыв связи С -С), но без коксообразо-вания, с получением продуктов более низкомолекулярных по сравнению с исходным сырьем, очищенных от гетероатомов, не содержащих олефинов, но менее ароматизированных, чем при каталитическом крекинге. Результаты гидрокрекинга (материальный баланс и качество продуктов) нефтяного сырья в сильной степени определяются свойствами катализатора: его гидрирующей и кислотной активностями и их соотношением. В зависимости от целевого назначения могут применяться катализаторы с преобладанием либо гидрирующей, либо крекирующей активностью. В результате будут получаться продукты соответственно легкого или глубокого гидрокрекинга. В основе каталитических процессов гидрокрекинга нефтяного сырья лежат реакции: - гидрогенолиза гетероорганических соединений серы, азота, кислорода и гидрирование ароматических углеводородов и непредельных соединений (то есть все те реакции, которые протекают при гидрооблагораживании); - крекинга парафиновых и нафтеновых углеводородов, деалки-лирования циклических структур и изомеризации образующихся низкомолекулярных парафинов. Реакции ароматизации и поликонденсации до кокса, протекающие при каталитическом крекинге, в процессах гидрокрекинга, проводимых при высоком давлении водорода и пониженных температурах, сильно заторможены из-за термодинамических ограничений и гидрирования коксогенов посредством спилловера водорода. Гидрогенолиз серо-, азот- и кислородсодержащих соединений протекает по механизму так же, как в процессах гидроочистки, и завершается образованием сероводорода, аммиака, воды и соответствующего углеводорода. Гидрирование ароматических углеводородов осуществляется последовательным насыщением ароматических колец с возможным сопутствующим разрывом образующихся нафтеновых колец и де-алкилированием. Гидрокрекинг высокомолекулярных парафинов на катализаторах с высокой кислотной активностью осуществляется по карбений-ионному механизму преимущественно с разрывом в средней части с наименьшей энергией связи С-С. Как и при каталитическом крекинге, вначале на металлических центрах катализатора происходит дегидрирование парафинов с образованием алкенов. Затем алкены на кислотных центрах легко превращаются в карбкатионы и инициируют цепной карбений-ионный процесс. Скорость гидрокрекинга при этом также возрастает с увеличением молекулярной массы ал-канов. Изопарафины с третичными углеродными атомами подвергаются крекингу со значительно большей скоростью, чем нормальные алканы. Так как распад карбений-ионов с отщеплением фрагментов, содержащих менее трех атомов углерода, сильно эндотер-мичен, при гидрокрекинге почти не образуется метан и этан и высок выход изобутана и изопентанов (больше равновесного). На катализаторах с высокой гидрирующей и умеренной кислотной активностями происходит интенсивное насыщение карбений-ионов, в результате образуются парафины с большим числом атомов углерода в молекуле, но менее изомеризованные, чем на катализаторах с высокой кислотностью. Основные отличия гидрокрекинга от каталитического крекинга заключаются в том, что общая конверсия парафинов выше в первом процессе, чем во втором. Это обусловлено легкостью образования алкенов на гидро-дегидрирующих центрах катализаторов гидрокрекинга. В результате наиболее медленная и энергоемкая стадия цепного механизма - инициирование цепи - при гидрокрекинге протекает быстрее, чем при каталитическом крекинге без водорода. Катализаторы гидрокрекинга практически не закоксовываются, так как плкены подвергаются быстрому гидрированию и не успевают вступать в дальнейшие превращения с образованием продуктов полимеризации и уплотнения. Нафтены с длинными алкильными цепями при гидрокрекинге на катализаторах с высокой кислотной активностью подвергаются изомеризации и распаду цепей, как парафиновые углеводороды. Расщепление кольца происходит в небольшой степени. Интенсивно протекают реакции изомеризации шестичленных в пятичленные нафтены. Бициклические нафтены превращаются преимущественно в мо*-ноциклические с высоким выходом производных циклопентана. На катализаторах с низкой кислотной активностью протекает в основном гидрогенолиз - расщепление кольца с последующим насыщением образовавшегося углеводорода. Катализаторы. Ассортимент современных катализаторов гидрокрекинга достаточно обширен, что объясняется разнообразием назначений процесса. Обычно они состоят из следующих трех ком» понентов: кислотного, дегидро-гидрирующего и связующего, обеспечивающего механическую прочность и пористую структуру. В качестве кислотного компонента, выполняющего крекирующую и изомеризующую функции, используют твердые кислоты, входящие в состав катализаторов крекинга: цеолиты, алюмосиликаты и оксид алюминия. Для усиления кислотности в катализатор иногда вводят галоген. Гидрирующим компонентом обычно служат те металлы, которые входят в состав катализаторов гидроочистки: металлы VIII (Ni, Со, иногда Pt или Pd) и VI групп (Мо или W). Для активирования катализаторов гидрокрекинга используют также разнообразные промоторы: рений, родий, иридий, редкоземельные элементы и др. Функции связующего часто выполняет кислотный компонент (оксид алюминия, алюмосиликаты), а также оксиды кремния, титана, циркония, магний- и цирконийсиликаты. Сульфиды и оксиды молибдена и вольфрама с промоторами являются бифункциональными катализаторами (с п- и р-проводимос-тями): они активны как в реакциях гидрирования -дегидрирования (гемолитических), так и в гетеролитических реакциях гидрогеноли-за гетероатомных углеводородов нефтяного сырья. Однако каталитическая активность Мо и W, обусловливаемая их дырочной проводимостью, недостаточна для разрыва углерод - углеродных связей. Поэтому для осуществления реакций крекинга углеводородов необходимо наличие кислотного компонента. Следовательно, катализаторы процессов гидрокрекинга являются по существу минимум три-функциональными, а селективного гидрокрекинга - тетрафункцио- нальными, если учесть их молекулярно-ситовые свойства. Кроме того, когда кислотный компонент в катализаторах гидрокрекинга представлен цеолитсодержащим алюмосиликатом, следует учесть также специфические крекирующие свойства составляющих кислотного компонента. Так, на алюмосиликате - крупнопористом носителе - в основном проходят реакции первичного неглубокого крекинга высокомолекулярных углеводородов сырья, в то время как на цеолите - реакции последующего более глубокого крекинга - с изомеризацией среднемолекулярных углеводородов. Таким образом, катализаторы гидрокрекинга можно отнести к полифункциональным. Значительно лучшие результаты гидрокрекинга достигаются при использовании катализаторов с высокой кислотной и оптимальной гидрирующей активностями, достоинства которых применительно к промышленным видам сырья заключаются в следующем. 1. Низок выход парафинов С, - С3 и особенно метана и этана. 2. Бутановая фракция содержит 60 - 80 % изобутана. 3. Пентановая и гексановая фракции на 90 - 96 % состоят из изомеров. Циклопарафины С6 содержат около 90 % метилциклопента-на. В результате легкий бензин (до 85 °С), содержащий 80-90 % парафинов, до 5 % бензола и 10 - 20 % нафтенов, имеет достаточно высокие антидетонационные характеристики: ОЧИМ составляют 85-88. 4. Бензины С7 и выше содержат 40-50 % нафтенов, 0-20 % ароматических и являются исключительно качественным сырьем риформинга. 5. Керосиновые фракции ввиду высокого содержания изопа-рафинов и низкого - бициклических ароматических углеводородов являются высококачественным топливом для реактивных двигателей. 6. Дизельные фракции содержат мало ароматических углеводородов и преимущественно состоят из производных циклопентана и циклогексана, имеют высокие цетановые числа и относительно низкие температуры застывания. Большое значение уделяется в настоящее время катализаторам на цеолитной основе. Они обладают высокой гидрокрекирующей активностью и хорошей избирательностью. Кроме того, они позволяют проводить процесс иногда без предварительной очистки сырья от азотсодержащих соединений. Содержание в сырье до 0,2 % азота практически не влияет на их активность. Повышенная активность катализаторов гидрокрекинга на основе цеолитов обусловливается более высокой концентрацией активных кислотных центров (брен- стедовских) в кристаллической структуре по сравнению с аморфными алюмосиликатными компонентами. В случае переработки тяжелого сырья наибольшую опасность для дезактивации катализаторов гидрокрекинга представляют, кроме азотистых оснований, асфальтены и прежде всего содержащиеся в них металлы, такие, как никель и ванадий. Поэтому гидрокрекинг сырья, содержащего значительное количество гетеро- и металлорга-нических соединений, вынужденно проводят в две и более ступеней. На первой ступени в основном проходит гидроочистка и неглубокий гидрокрекинг полициклических ароматических углеводородов (а также деметаллизация). Катализаторы этой ступени идентичны катализаторам гидроочистки. На второй ступени облагороженное сырье перерабатывают на катализаторе с высокой кислотной и умеренной гидрирующей активностями. При гидрокрекинге нефтяных остатков исходное сырье целесообразно подвергнуть предварительной деметаллизации и гидрообес-сериванию (как в процессе «Хайвал» и др.) на серо- и азотостойких катализаторах с высокой металлоемкостью и достаточно высокой гидрирующей, но низкой крекирующей активностями. В процессе селективного гидрокрекинга в качестве катализаторов применяют модифицированные цеолиты (морденит, эрионит и др.) со специфическим молекулярно-ситовым действием: поры цеолитов доступны только для молекул нормальных парафинов. Дегид-ро-гидрирующие функции в таких катализаторах выполняют те же металлы и соединения, что и в процессах гидроочистки. 10.5.2. Основные параметры процессов гидрокрекинга Температура. Оптимальный интервал температур для процессов гидрокрекинга составляет 360 - 440 °С с постепенным их повышением от нижней границы к верхней по мере падения активности катализатора. При более низкой температуре реакции крекинга протекают с малой скоростью, но при этом более благоприятен химический состав продуктов: большее содержание нафтенов и соотношение изопарафин: я-парафин. Чрезмерное повышение температуры ограничивается термодинамическими факторами (реакций гидрирования полициклической ароматики) и усилением роли реакций газо- и коксообразования. Тепловой Таблица 10.17
эффект гидрокрекинга определяется соотношением реакций гидрирования и расщепления. Обычно отрицательный тепловой эффект расщепления перекрывается положительным тепловым эффектом гидрирования. Естественно, экзотермический тепловой эффект суммарного процесса тем больше, чем выше глубина гидрокрекинга (табл. 10.17). Поэтому при его аппаратурном оформлении обычно предусматривается возможность отвода избыточного тепла из зоны реакции, чтобы не допустить перегрева реакционной смеси. При использовании реакторов со стационарным катализатором последний насыпают несколькими слоями так, чтобы между ними можно было осуществить охлаждение потока (обычно частью холодного ВСГ). Давление. Установлено, что лимитирующей стадией суммарного процесса гидрокрекинга является гидрирование ненасыщенных соединений сырья, особенно полициклических ароматических углеводородов. Поэтому катализаторы глубокого гидрокрекинга должны обладать, кроме высокой кислотной активности, и достаточной гидрирующей активностью. На скорость реакций гидрирования существенное влияние оказывает фазовое состояние (Г + Ж+Т) реакционной смеси, которое является функцией от давления, температуры, концентрации водорода, глубины конверсии и фракционного состава исходного сырья. В целом на катализаторах гидрирующего типа с повышением давления возрастают как скорость реакций, так и глубина гидрокрекинга (табл. 10.18). Минимально приемлемое давление тем выше, чем менее активен катализатор и чем тяжелее сырье гидрокрекинга. Таблица 10.18 На катализаторах с вы-
сокой кислотной и низкой гидрирующей активностями скорость гидрокрекинга сырья зависит от давления более сложно. При невысоких давлениях концентрация водорода на поверхности катализатора мала, и часть кислотных его центров не участвует в ионном цикле в результате дезактивации коксом. С другой стороны, при чрезмерном повышении давления возрастает концентрация водорода не только на металлических (гидрирующих), но и кислотных центрах катализатора вследствие спилло-вера водорода, в результате тормозится стадия инициирования карбкатионно-го цикла через образование олефинов. Наложение этих двух факторов может привести к наличию максимума скорости реакций как функции давления. Так, выходы отдельных фракций гидрокрекинга на катализаторе с высокой кислотной активностью бе-. лого вазелинового масла, выкипающего при 350 - 485 °С, проходят через максимум при 21 МПа (табл. 10.19). Большинство промышленных установок гидрокрекинга работает под давлением 15—17 МПа. Для гидрокрекинга нефтяных остатков с использованием относительно дорогостоящих катализаторов применяют давление 20 МПа. Гидрокрекинг прямогонных легких газойлей с низким содержанием азота можно проводить при относительно низких давлениях - около 7 МПа. Объемная скорость подачи сырья при гидрокрекинге вследствие предпочтительности проведения процесса при минимальных температурах обычно низка (0,2 - 0,5 ч1). При ведении процесса в режиме Таблица 10.19 Не нашли, что искали? Воспользуйтесь поиском:
|