ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Промышленные процессы гидрооблагораживания дистиллятных фракцийПромышленные установки гидрогенизационной переработки нефтяного сырья включают следующие блоки: реакторный, сепарации газопродуктовой смеси с выделением ВСГ, очистки ВСГ от сероводорода, компрессорную, стабилизации гидрогенизата. Установки гидрокрекинга имеют дополнительно фракционирующую колонну. Установки имеют много общего по аппаратурному оформлению и схемам реакторных блоков, различаются по мощности, размерам аппаратов, технологическому режиму и схемам секций сепарации и стабилизации гидрогенизатов. Установки предварительной гидроочистки бензинов - сырья каталитического риформинга - различаются также вариантом подачи ВСГ: с циркуляцией или без циркуляции «на проток». На всех остальных типах установок применяется только циркуляционная схема подачи ВСГ. Схема подачи ВСГ «на проток» применяется только на комбинированных установках гидроочистки и каталитического риформинга (со стационарным слоем катализатора и проводимого под повышенным давлением водорода) прямогонных бензинов с пониженным содержанием сернистых соединений (<0,1 % масс). Такая схема пре- дусматривает «жесткую связь» по водороду между каталитическим риформингом и гидроочисткой. По этой схеме весь ВСГ риформин-га под давлением процесса подается в реакторы гидроочистки. Схема удобна в эксплуатации и более проста по аппаратурному оформлению. В схеме с циркуляцией ВСГ легко поддерживается постоянное соотношение водородхырье. Наличие циркуляционного компрессора позволяет в зависимости от качеств катализатора и сырья, концентрации водорода в ВСГ регулировать требуемую кратность циркуляции ВСГ, дает возможность проводить газовоздушную регенерацию катализаторов.
На промышленных гидрогенизаци-онных установках применяется 2 способа сепарации ВСГ из газопродуктовой смеси: холодная (низкотемпературная) и горячая(высокотемпературная) (рис. 10.12, а, б).
Холодная сепарация ВСГ применяется на установках гидроочистки бензиновых, керосиновых и иногда дизельных фракций; заключается в охлаждении газопродуктовой смеси, отходящей из реакторов гидроочистки, сначала в теплообменниках, затем в холодильниках (воздушных и водяных) и выделении ВСГ в сепараторе при низкой температуре и высоком давлении. В сепараторе низкого давления выделяют низкомолекулярные углеводородные газы. Горячая сепарация ВСГ применяется преимущественно на установках гидрообессеривания высококипящих фракций нефти: дизельных топлив, вакуумных газойлей, масляных дистиллятов и парафинов. Газопродуктовая смесь после частичного охлаждения в теплообменниках поступает в горячий сепаратор; выделяемые в нем ВСГ и углеводородные газы охлаждаются до низкой температуры в воздушных и водяных холодильниках и далее поступают в холодный сепаратор, где отбирается ВСГ с достаточно высокой концентрацией водорода. Схема холодной сепарации (а) ВСГ, по сравнению с горячей (б), обеспечивает более высокую концентрацию водорода в ВСГ. Основным достоинством варианта горячей сепарации является меньший расход как тепла, так и холода. Различие в применяемых на гид-рогенизационных установках схемах стабилизации гидрогенизатов (отпаркой водяным паром при низком давлении или подогретым водородсодержащим газом при повышенном давлении, с подогревом низа стабилизационной колонны горячей струей через печь или рибойлером; применительно к гидрообессериванию масляных дистиллятов - с дополнительной разгонкой под вакуумом) обусловливается фракционным составом сырья, ресурсами ВСГ и водяного пара и т.д. На НПЗ применяют следующие два варианта регенерации насыщенного раствора моноэтаноламина - абсорбента сероочистки ВСГ от H2S: непосредственно на самой установке гидрооблагораживания либо централизованную регенерацию в общезаводском узле. Основным аппаратом гидрогениза-ционных установок является реактор со стационарным слоем катализатора.
На рис. 10.13 приведена конструкция двухсекционного реактора гидроочистки дизельного топлива. Он представляет собой вертикальный цилиндрический аппарат с эллиптическими днищами. Корпус реактора изготавливается из двухслойной стали 12ХМ и 08Х18Н10Т. Верхний слой катализатора засыпается на колосниковую решетку, а нижний - на форфоровые шарики, которыми заполняется сферическая часть нижнего днища. Таблица 10.16 Основные режимные параметры и показатели промышленных установок гидроочистки дизельных топлив
Для отвода избыточного тепла реакций под колосниковой решеткой вмонтирован коллектор для подачи холодного ВСГ. Сырье, подаваемое через штуцер в верхнем днище, равномерно распределяется по всему сечению и сначала для задерживания механических примесей проходит через фильтрующие устройства, состоящие из сетчатых корзин, погруженные в верхний слой катализатора. Промежутки между корзинами заполнены фарфоровыми шарами. Газосырьевая смесь проходит через слой катализатора в обеих секциях и по штуцеру нижней секции выводится из реактора. Гидроочистку прямогонных бензиновых фракций осуществляют на секциях гидроочистки установок каталитического риформинга или комбинированных установок ЛК-бу. Для гидроочистки реактивных топлив используют специализированные установки типа Л-24-9РТ, а также секции гидроочистки КУ ЛК-бу. Гидроочистку прямогонных дизельных фракций проводят на установках типа Л-24-6, Л-24-7, ЛЧ-24-7, ЛЧ-24-2000 и секциях гидроочистки КУ ЛК-бу (табл. 10.16). Принципиальная технологическая схема установки гидроо - чистки дизельного топлива ЛЧ -24-2000 приведена на рис. 10.14. Циркуляционный ВСГ смешивается с сырьем, смесь нагревается в сырьевых теплообменниках и в трубчатой печи П-1 до температуры реакции и поступает в реактор Р-1. После реактора газопродуктовая смесь частично охлаждается в сырьевых теплообменниках (до температуры 210-230 °С) и поступает в секцию горячей сепарации ВСГ, состоящей из сепараторов С-1 и С-2. ВСГ, выводимый из холодного сепаратора С-2, после очистки МЭА в абсорбере К-2 подается на циркуляцию. Гидрогенизаты горячего и холодного сепараторов смешиваются и направляются на стабилизационную колонну К-1, где подачей подогретого в П-1 отдувочного ВСГ из очищенного продукта удаляются углеводородные газы и отгон (бензин). Ниже приводится материальный баланс установок гидроочистки бензина (I), керосина (II), дизельного топлива (III) и гидрообессерива-ния вакуумного дистиллята - сырья каталитического крекинга (IV). И да w Взято, % *« Сырье 100,00 100,00 100,00 100,00 Водород 100% -ный на реакцию 0,15' 0,25 0,40 0,65 Всего 100,15 100,25 100,40 100,65 Получено, % Гидроочищенное топливо 99,00 97,90 96,90 86,75 Отгон - 1,10 1,3 1,3 Углеводородный газ 0,65 0,65 0,60 1,5 Сероводород — 0,20 1,2 1,5 Потери 0,5 0,4 0,4 0,4 Всего 100,15 100,25 100,40 100,65 ♦Общий расход с учетом потерь на растворение. Гидроочистка вакуумных дистиллятов. Вакуумные дистилляты являются традиционным сырьем для процессов каталитического крекинга и гидрокрекинга. Качество вакуумных газойлей определяется глубиной отбора и четкостью ректификации мазута. Вакуумные га- 19 — 1908
зойли 350—500 °С практически не содержат металл-органических соединений и асфаль-тенов, а их коксуемость не превышает обычно 0,2 %. С повышением tKK до 540 - 560 °С коксуемость возрастает в 4-10 раз, содержание металлов - в 3-4 раза, серы - на 20-45 %. Влияние содержащихся в сырье металлов, азотистых соединении и серы проявляется в снижении активности работы катализатора за счет отложения кокса и необратимого отравления металлами. Гидроочистка вакуумного газойля 350- 500 °С не представляет значительных трудностей и проводится в условиях и на оборудовании, аналогичных для гидроочистки дизельных топлив. При давлении 4-5 МПа, температуре 360-410 °С и объемной скорости сырья 1-1.5 ч-1 достигается 89-94%-ная глубина обессеривания; содержание азота снижается на 20 - 30%, металлов - на 75 - 85 %, а коксуемость - на 65 - 70 %. Гидроочистку тяжелых дистиллятов деструктивных процессов (коксования, висбрекинга) обычно проводят в смеси с прямогонны-ми дистиллятами в количестве до 30 %. Гидроочистка масляных рафинатов применяется в основном для осветления и улучшения их стабильности против окисления; одновременно уменьшается их коксуемость и содержание серы (глубина обессеривания - 30 - 40 %); индекс вязкости несколько увеличивается (на 1-2 единицы); температура застывания масла повышается на 1-3 °С. Выход базовых масел дистиллятных и остаточных рафинатов составляет более 97 % масс. Типовые установки гидроочистки масел и парафинов (типа Г-24/1 производительностью 360 тыс. т/год) включают до пяти технологических потоков. Установки гидроочистки масел отличаются от гидроочистки дизельных топлив только способом стабилизации гидрогенизата: отгонка углеводородных газов и паров бензина осуществляется подачей водяного пара; затем стабильное масло подвергается осушке в вакуумной колонне под давлением 13,3 кПа. Технологический режим процесса гидроочистки масляных рафи-натов следующий: Катализатор АКМ или АНМ Температура в реакторе. 'С 280—325 'С Давление в реакторе, МПа 3,5—4,0 Объемная скорость подачи сырья, ч~' 1,5—3,0 для дистиллятного рафината 250—300 остаточного 500—600 Содержание Ht в ВСГ, % об. 75-85 10.4.6. Процессы гидрооблагораживания нефтяных остатков В современной мировой нефтепереработке наиболее актуальной и сложной проблемой является облагораживание (деметаллизация, деасфальтизация и обессеривание) и каталитическая переработка (каталитический крекинг, гидрокрекинг) нефтяных остатков - гуд-ронов и мазутов, потенциальное содержание которых в нефтях большинства месторождений составляет 20 - 55 %. Трудности, которые возникают при разработке таковых процессов, связаны не с осуществлением самих химических реакций гид-рогенолиза или крекинга, а в основном сопутствующим в каталитических процессах явлением необратимого отравления катализаторов металлоорганическими соединениями сырья. Достаточно подробная характеристика нефтяных остатков была приведена в табл. 7.4 применительно к термодеструктивным процессам их переработки. Наиболее важными из показателей качества нефтяных остатков как сырья для каталитических процессов их облагораживания и переработки являются содержание металлов (определяющее степень дезактивации катализатора и его расход) и коксуемость (обусловливающая коксовую нагрузку регенераторов каталитического крекинга или расход водорода в гидро- 19» генизационных процессах). Именно эти показатели были положены в основу принятой за рубежом классификации остаточных видов сырья для процессов каталитического крекинга. По содержанию металлов и коксуемости в соответствии с этой классификацией нефтяные остатки подразделяют на следующие четыре группы:
I. Высококачественное сырье (например, мазут мангышлакской или грозненской нефтей). Его можно перерабатывать без предварительной подготовки на установках ККФ лифт-реакторного типа с пассивацией металлов и отводом тепла в регенераторах. П. Сырье среднего качества. Его можно перерабатывать на установках ККФ последних моделей с двухступенчатым регенератором и отводом избытка тепла без предварительной подготовки, но при повышенном расходе металлостойкого катализатора и с пассивацией отравляющего действия металлов сырья. III и IV. Сырье низкого качества (например, мазуты и гудроны западно-сибирской, ромашкинской и арланской нефтей). Каталитическая их переработка требует обязательной предварительной подготовки - деметаллизации и деасфальтизации. Вышеприведенная классификация нефтяных остатков применима и для характеристики качества сырья гидрокаталитических процессов, однако применительно к этим процессам важнее содержание металлов, чем коксуемость. Для переработки мазутов в малосернистое котельное топливо предложены и реализованы следующие методы «непрямого» гидро-обессеривания: -вакуумная (или глубоковакуумная) перегонка мазута с последующим гидрообессериванием вакуумного (глубоковакуумного) газойля и смешение последнего с гудроном (содержание серы в котельном топливе 1,4-1,8 %); - вакуумная перегонка мазута и деасфальтизация гудрона с последующим обессериванием вакуумного газойля и деасфальтизата и смешение их с остатком деасфальтизации (содержание серы в котельном топливе 0,4—1,4%); - вакуумная перегонка мазута и деасфальтизация гудрона с последующим гидрообессериванием вакуумного газойля и деасфальти-зата и их смешение (содержание серы в котельном топливе составит 0,2 - 0,3 %), остаток деасфальтизации подвергается газификации или раздельной переработке с получением битумов, пеков, связующих, топливного кокса и т.д. Для обеспечения глубокой безостаточной переработки нефти необходимы либо прямое гидрообессеривание нефтяных остатков с ограниченным содержанием металлов с использованием нескольких типов катализаторов, или каталитическая переработка с предварительной деметаллизацией и деасфальтизацией гудронов. Краткие сведения о промышленных процессах подготовки сырья для каталитической переработки нефтяных остатков (сольвент-ной и термоадсорбционной деасфальтизацией) были приведены в главе 8 (§ 8.5.2). Современные зарубежные промышленные установки гидрообес-серивания нефтяных остатков различаются между собой в основном схемами реакторных блоков и по этому признаку можно подразделить их на следующие варианты: 1) гидрообессеривание в одном многослойном реакторе с использованием в начале процесса крупнопористых металлоемких катализаторов и затем - катализаторов с высокой гидрообессеривающей активностью; 2) гидрообессеривание в двух- и более ступенчатых реакторах со стационарным слоем катализатора, из которых головной (предварительный) реактор предназначен для деметаллизации и деасфальтизации сырья на дешевых металлоемких (часто нерегенерируемых) катализаторах, а последний (или последние) - для гидрообессерива-ния деметаллизированного сырья; 3) гидрообессеривание в реакторе с трехфазным псевдоожи-женным слоем катализатора. Псевдоожиженный слой позволяет обеспечить более интенсивное перемешивание контактирующих фаз, изотермический режим реагирования и поддержание степени конверсии сырья и равновесной активности катализатора на постоянном уровне за счет непрерывного вывода из реактора
части катализатора и замены его свежим или регенерированным. Однако из-за существенных недостатков, таких, как большие габариты и масса толстостенных реакторов, работающих под высоким давлением водорода, сложность шлюзовой системы ввода и вывода катализаторов, большие капитальные и эксплуатационные расходы, процессы гидрообессеривания и гидро крекинга в псевдоожиженном слое не получили до сего времени широкого распространения в нефтепереработке. Из промышленно-освоенных процессов оригинальным, наиболее технологически гибким и достаточно эффективным является процесс гидрообессеривания тяжелых нефтяных остатков «Хайвал», разработанный Французским институтом нефти. Принципиальная технологическая схема представлена на рис. 10.15. Реакторный блок установки состоит из поочередно работающих защитных реакторов Р-1а и Р-1б, двух последовательно работающих основных реакторов Р-2 и Р-3 глубокой гидродеметаллизации и двух последовательно работающих реакторов гидрообессеривания Р-4 и Р-5. Защитные реакторы Р-1а и Р-1б работают в режиме взаимозаменяемости: когда катализатор в работающем реакторе потеряет свою деметаллизирующую активность, переключают на другой резервный реактор без остановки установки. Продолжительность непрерывной работы реакторов составлят: защитных - 3-4 месяца, а остальных - 1 год. Исходное сырье (мазуты, гудроны) смешиваются с ВСГ, реакционная смесь нагревается в печи П-1 до требуемой температуры и последовательно проходит защитный и основные реакторы гидродеметаллизации и реакторы гидрообессеривания. Продукты гидрообес- серивания подвергаются горячей сепарации в горячем и холодном газосепараторах, далее стабилизации и фракционированию на атмосферных и вакуумных колоннах. В качестве катализатора в процессе используется модифицированный гидрирующими металлами оксид алюминия, обладающий высокой металлоемкостью (катализатор имеет шероховатую поверхность с порами в форме «ежа»). Не нашли, что искали? Воспользуйтесь поиском:
|