Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






5 страница. 17. На рисунке приведены зависимости лучеиспускательной способности абсолютно черного тела от частоты излучения при различных температурах (T3 > T2 >




17. На рисунке приведены зависимости лучеиспускательной способности абсолютно черного тела от частоты излучения при различных температурах (T 3 > T 2 > T 1). Как с помощью этого графика объяснить закон Стефана-Больцмана?
1) с увеличением температуры максимум лучеиспускательной способности сдвигается в область больших частот пропорционально четвертой степени температуры.
2) с увеличением температуры увеличивается лучеиспускательная способность пропорционально четвертой степени температуры.
3) с увеличением температуры площадь под кривой увеличивается пропорционально четвертой степени температуры.

18. Укажите ошибочное утверждение, касающееся теплового излучения.
1) электромагнитное излучение испускается телами в виде отдельных квантов, энергия которых пропорциональна частоте излучения.
2) под интегральной энергетической светимостью тела понимается поток энергии, испускаемый единицей поверхности тела по всем направлениям.
3) закон Кирхгора утверждает, что лучеиспускательная и поглощательная способности тела есть величины постоянные и от природы и свойств самого тела не зависящие.

19. Из отверстия в печи площадью 10 см2 излучается 250 кДж энергии за 1 мин. Определить (в мкм) длину волны, на которую приходится максимум излучаемой энергии.

20. Температура абсолютно черного тела 127 °С. После повышения температуры суммарная мощность излучения увеличилась в три раза. На сколько градусов повысилась при этом температура тела?

21. Монохроматическое излучение падает на поверхность платины (работа выхода 6.3 эВ). Определить (в нм) длину волны этого излучения, если известно, что фототок полностью прекращается при задерживающей разности потенциалов 0.7 В.

22. На поверхность серебра падает свет с длиной волны 500 нм. Зарядится ли при этом серебро или останется нейтральным? Если зарядится, то какой знак будет у заряда? Красная граница фотоэффекта для серебра 261 нм. Возможные ответы:
1) зарядится положительно; 2) зарядится отрицательно;
3) не зарядится; 4) знак заряда зависит от длины волны.

23. Определить (в нм) длину волны излучения, вырывающего с поверхности вольфрама электроны, максимальная кинетическая энергия которых 2.1 эВ. Работа выхода электрона с поверхности вольфрама 4.5 эВ.

24. Определить импульс фотона с энергией, соответствующей красной границе фотоэффекта для цезия (работа выхода 1.2 эВ).

25. Определить длину волны красной границы фотоэффекта материала фотокатода, если при облучении его монохроматическим светом с длиной волны 200 нм 80% энергии каждого фотона расходуется на вырывание электрона из металла.

26. Какой порядковый номер в таблице Менделеева будет иметь элемент, образующийся из урана (порядковый номер в периодической системе 92, массовое число – 239) после двух электронных бета-распадов и одного альфа-распада?

27. За четыре дня радиоактивность препарата радона уменьшилась в 2.9 раза. Определить постоянную распада.

28. Определить, какая (в %) доля первоначального числа атомов радия распадается за 3200 лет. Период полураспада радия равен 1600 лет.

29. Найти активность 1 мг полония (массовое число ядра 210), если постоянная распада равна 5.77×10–8 с–1).

30. Постоянная распада бета-изотопа хлора равна 3×10–4 c–1. Определить вероятность того, что ядро распадается за промежуток времени, равный 100 секундам.


ОПТИКА Вариант № 16

 

1. Опыт Юнга проводится в зеленом свете. Как изменится расстояние между соседними интерференционными полосами на экране, если вместо зеленого света использовать а) синий; б) красный свет? Ответы:
1) а – увеличится, б – уменьшится; 2) а – уменьшится, б – увеличится;
3) а – увеличится, б – увеличится; 4) а – уменьшится, б – уменьшится.

2. В опыте Юнга ширина интерференционной полосы на экране равна 0.8 мм, длина волны падающего света 650 нм, а расстояние от щелей до экрана 5 м. Найти (в мм) расстояние между щелями.

3. На сколько длин волн изменяется оптическая разность хода интерферирующих лучей при переходе от середины одной интерференционной полосы к середине соседней полосы?

4. На сколько длин волн изменяется оптическая разность хода интерферирующих лучей при переходе от середины одной интерференционной полосы к середине соседней полосы?

5. На поверхности воды находится тонкая пленка метилового спирта. При наблюдении в отраженном свете под углом 45° пленка кажется черной. Оценить (в нм) наименьшую возможную толщину пленки, если она освещается светом с длиной волны 589 нм. Показатели преломления воды 1.333, метилового спирта 1.330.

6. Луч лазера, генерирующего излучение с длиной волны 600 нм, нормально падает на непрозрачный экран с круглым отверстием, представляющим собой первую зону Френеля для точки наблюдения P. Половину отверстия (по диаметру) перекрыли стеклянной пластинкой толщиной 5 мкм. Найти отношение интенсивности света в точке P к интенсивности падающего света. Потерями на отражение и поглощение в пластине пренебречь. Показатель преломления стекла для приведенной длины волны равен 1.5.

7. На непрозрачный экран с круглым отверстием нормально падает плоская монохроматическая световая волна. Определить (в мм) радиус отверстия, если известно, что для точки наблюдения, расположенной на расстоянии 3 м за экраном, в пределах отверстия укладывается 4 зоны Френеля. Длина волны 500 нм.

8. На плоскую дифракционную решетку нормально падает пучок белого света. Протяженность видимого участка спектра первого порядка, спроектированного на экран линзой с фокусным расстоянием 50 см равно 4.75 см. Определить (в мкм) постоянную решетки. Длины волн границ видимого света принять равными 380 нм и 760 нм, и считать их много меньшими постоянной решетки.

9. На щель падает нормально параллельный пучок монохроматического света. Под каким (в градусах) углом будет наблюдаться пятый дифракционный минимум, если ширина щели в 10 раз больше длины волны падающего света.

10. Какова (в пм) длина волны монохроматического рентгеновского излучения, падающего на кристалл кальцита, если дифракционный максимум второго порядка наблюдается, когда угол между направлением падающего излучения и гранью кристалла равен 3°? Расстояние между атомными плоскостями кристалла принять равным 0.3 нм.

11. Определить (в мм) толщину кварцевой пластинки, для которой угол поворота плоскости поляризации света длиной волны 490 нм равен 150°. Постоянная вращения в кварце для этой длины волны равна 26.3 град./мм.

12. Определить коэффициент преломления прозрачного вещества, для которого предельный угол полного внутреннего отражения равен углу полной поляризации.

13. Угол полной поляризации при отражении света от кристалла каменной соли равен 57°. Определить скорость распространения света в этом кристалле.

14. Частично поляризованный свет проходит через поляроид. При повороте поляроида на 60° от положения, соответствующего максимальной яркости, яркость пучка уменьшается в 2 раза. Учитывая, что поляроид поглощает 10% проходящей через него энергии, определить степень поляризации света, падающего на поляроид.

15. Частично поляризованный свет рассматривается через идеальный поляроид. При повороте поляроида на 60° относительно положения, соответствующего максимальной интенсивности выходящего из поляроида пучка, интенсивность света уменьшается в 1.5 раза. Определить отношение интенсивностей естественной и поляризованной частей падающего пучка.

16. Имеются два абсолютно черных тела. Температура первого тела 2500 К. Найти температуру второго тела, если длина волны, отвечающая максимуму его испускательной способности, на 0.5 мкм больше длины волны, соответствующей максимуму испускательной способности первого тела.

17. Найдите мощность, излучаемую абсолютно черным шаром радиусом 10 см, который находится в комнате при температуре 20 °С.

18. Укажите неверное утверждение:
1) энергетическая светимость тела – поток тепловой энергии, излучаемой единицей поверхности тела;
2) лучеиспускательная способность тела – поток тепловой энергии, излучаемой единицей поверхности в единичном интервале частот;
3) поглощательной способностью тела называется отношение падающего на тело потока тепловой энергии к поглощенному;
4) абсолютно черным называется тело, полностью поглощающее излучение, падающее на него.
Если считаете, что утверждения (1-4) верны, то укажите: 5) утверждения (1-4) верны.

19. При работе электрической лампы накаливания вольфрамовый волосок нагрелся, в результате чего длина волны, на которую приходится максимум излучательной способности, изменилась от 1.4 до 1.1мкм. Во сколько раз увеличилась при этом максимальная спектральная лучеиспускательная способность вольфрамового волоска, если его принять за абсолютно черное тело?

20. Земля вследствие лучеиспускания в среднем ежеминутно теряет с 1 м2 поверхности 5.4 кДж энергии. При какой температуре абсолютно черное тело излучало бы такое же количество энергии?

21. Фотокатод облучается светом с длиной волны 500 нм. Найти величину задерживающего потенциала для фотоэлектронов, если известно, что работа выхода электрона из материала катода 2 эВ.

22. На рисунке изображены вольтамперные характеристики фототока, полученные при облучении одного и того же металла. В каком случае для задержки испущенных фотокатодом электронов нужно приложить большее задерживающее напряжение между катодом и анодом?

23. Найти работу выхода электрона из металла, у которого фотоэффект начинается при частоте падающего света 1037 ТГц.

24. Определить массу фотона с длиной волны, соответствующей красной границе фотоэффекта для платины (работа выхода 6.3 эВ)

25. Работа выхода электронов из кадмия равна 4.08 эВ. Какой (в нм) должна быть длина волны излучения, падающего на кадмиевую пластину, чтобы при фотоэффекте максимальная скорость фотоэлектронов была равна 2×106 м/с?

26. Постоянная распада рубидия равна 0.00077 с–1. Определить (в минутах) его период полураспада T.

27. Период полураспада плутония равен 24100 лет. Определить, какая доля атомов препарата плутония распадается за 10 лет.

28. За какое (в сутках) время произойдет распад 2 мг полония, если в начальный момент его масса равна 0.2 г. Период полураспада полония 138 суток.

29. Период полураспада радия 1600 лет. Вычислить среднюю продолжительность жизни атомов радия в годах.

30. Удельная активность радиоактивного вещества равна...
1) числу ядер, распадающихся в единицу времени;
2) числу ядер, распадающихся в единицу времени в единице массы вещества;
3) времени, в течение которого распадается половина имеющихся радио активных ядер;
4) относительному уменьшению числа радиоактивных ядер за единицу времени.
Какое из определений верное?


ОПТИКА Вариант № 17

 

1. В опыте Юнга одна из щелей закрыта тонкой плоскопараллельной прозрачной пластинкой. Как изменится интерференционная картина на экране, если вместо этой пластины поставить другую той же толщины, но с большим показателем преломления? Ответы:
1) увеличится расстояние между интерференционными полосами;
2) картина сдвинется параллельно самой себе;
3) уменьшится расстояние между полосами;
4) не изменится.

2. Тонкая прозрачная пластинка освещается нормально падающим белым светом. Найти (в нм) наименьшую разность хода лучей, отраженных от поверхностей, при которой пластинка в отраженном свете выглядит оранжевой. Длина волны оранжевого света 600 нм.

3. Определить (в нм) длину волны монохроматического излучения, если в опыте Юнга расстояние от середины центральной полосы до середины первого интерференционного максимума равно 0.5 мм, расстояние между щелями 0.5 см. Экран расположен на расстоянии 5 м от щелей.

4. На стеклянный клин с показателем преломления 1.5 нормально падает монохроматический свет. На 1 м длины клина наблюдается 4000 темных интерференционных полос. Определить (в нм) длину волны света, если угол при вершине клина равен 3 минутам.

5. Найти (в мм) радиус пятого темного кольца Ньютона в проходящем свете, если пространство между стеклянной пластинкой и линзой заполнено жидкостью с показателем преломления 1.5. Радиус линзы равен 2 м, длина волны 6×10–7 м. Показатель преломления жидкости больше показателя преломления стекла.

6. На плоскую дифракционную решетку нормально падает пучок белого света. Протяженность видимого участка спектра первого порядка, спроектированного на экран линзой с фокусным расстоянием 50 см равно 4.75 см. Определить (в мкм) постоянную решетки. Длины волн границ видимого света принять равными 380 нм и 760 нм, и считать их много меньшими постоянной решетки.

7. Какова должна быть (в мм) длина дифракционной решетки с периодом 300 штрихов на 1 мм, чтобы разрешить две спектральные линии с длинами волн 6000 и 6000.5 Å в спектре наивысшего порядка?

8. На дифракционную решетку падает нормально пучок монохроматического света. Максимум третьего порядка наблюдается под углом 30° к нормали. Найти (в мкм) постоянную решетки, если длина волны падающего света равна 600 нм.

9. Плоская монохроматическая световая волна интенсивностью I падает нормально на непрозрачный экран с круглым отверстием, представляющим собой первую зону Френеля для точки наблюдения P. Половину отверстия (по диаметру) перекрыли непрозрачной шторкой. Найти интенсивность света в точке P. Ответы:
1) I /4; 2) I /2; 3) I; 4) 2 I; 5) 4 I; 6) 0.

10. Параллельный пучок света длиной волны 595 нм падает нормально на непрозрачную пластинку с круглым отверстием диаметром 2 мм и затем попадает на экран, расположенный на расстоянии 42 см от пластинки. Экран начинают отодвигать от пластинки со скоростью 7 мм/с. Через какое минимальное время от начала движения в центре дифракционной картины будет наблюдаться яркое пятно?

11. Луч 1 (см. рисунок) естественного света падает на плоскопараллельную стеклянную пластинку. Угол падения равен углу полной поляризации. При таком угле падения на стекло интенсивность отраженного луча составляет 0.1 от интенсивности падающего естественного света. Определить интенсивность света в луче 3, приняв интенсивность падающего света за единицу. Поглощением света в пластинке можно пренебречь.

12. Распространяющийся в воде луч света падает на ледяную поверхность. Определить (в градусах) угол падения, если отраженный луч полностью поляризован. Показатели преломления воды и льда равны 1.33 и 1.31 соответственно.

13. Во сколько раз уменьшается интенсивность естественного света после прохождения через два поляроида, главные плоскости которых составляют между собой угол 63°, если в каждом из поляроидов теряется 10% падающего света?

14. Между двумя скрещенными поляроидами помещена пластинка в полволны. Оптическая ось пластинки параллельна оси одного из поляроидов. На систему падает пучок естественного света интенсивностью, равной 10 (в единицах СИ). Чему равна интенсивность света, прошедшего через систему?

15. Естественный луч света падает на плоскопараллельную стеклянную пластинку под углом полной поляризации (см. рисунок). При этом интенсивность отраженного света составляет 30% от интенсивности падающего света. Найти степень поляризации преломленного луча 2. Поглощением света пренебречь. Показатель преломления стекла принять равным 1.5.

16. При температуре абсолютно черного тела 1000 К длина волны, соответствующая максимуму лучеиспускательной способности этого тела 2.9 мкм. На сколько микрометров уменьшится эта длина волны при увеличении температуры тела на 1500 К.

17. Температура абсолютно черного тела увеличилась в три раза. При этом длина волны, соответствующая максимуму лучеиспускательной способности изменилась на 2 мкм. Найти длину волны, соответствующую максимуму лучеиспускательной способности при начальной температуре тела.

18. При переходе от температуры T 1 к температуре T 2 площадь, ограниченная графиком функции распределения плотности энергии равновесного излучения по длинам волн, увеличивается в 16 раз. Во сколько раз уменьшается при этом длина волны, на которую приходится максимум испускательной способности абсолютно черного тела?

19. Относительное изменение энергетической светимости с повышением температуры абсолютно черного тела составило (R 2R 1)/ R 1=3. Во сколько раз уменьшилась при этом длина волны, соответствующая максимуму лучеиспускательной способности?

20. Температура абсолютно черного тела изменилась при нагревании от 1000 К до 3000 К. Во сколько раз увеличилась при этом энергетическая светимость?

21. Длины волн красной границы фотоэффекта для некоторых веществ соотносятся как l1 > l2 > l3. Как соотносятся между собой работы выхода электрона из данных веществ?
1) А 1 > А 2 > А 3; 2) А 3 > А 2 > А 1; 3) А 1 = А 2 = А 3; 4) А 2 > А 1 > А 3.

22. Работа выхода электронов из закиси меди 5.15 эВ. Вызовет ли фотоэффект ультрафиолетовое излучение с длиной волны 330 нм?

23. Фотокатод освещается источником света с регулируемой интенсивностью, при этом зависимость фототока от напряжения между катодом и анодом изображается кривыми 1, 2, 3 на рисунке. Укажите номер кривой, соответствующей наибольшей интенсивности падающего на фотокатод света.

24. Определить наименьший задерживающий потенциал, необходимый для запирания фототока, если известно, что фотокатод облучается светом с длиной волны 0.4 мкм, а красная граница фотоэффекта для материала фотокатода 0.67 мкм.

25. Найти потенциал, полностью задерживающий фотоэлектроны, если их максимальная кинетическая энергия составляет 20% энергии кванта падающего на фотокатод излучения с длиной волны 150 нм.

26. Определить (в годах) период полураспада таллия, если известно, что через 100 дней его активность уменьшилась в 1.07 раза.

27. Найти активность 10–9 кг полония (массовое число ядра 210). Период полураспада полония равен 138 суткам.

28. Образец содержит 5000 радиоактивных атомов с периодом полураспада Т. Сколько ядер останется нераспавшимися через промежуток времени, равный Т?

29. Образец радиоактивного радона содержит 1010 радиоактивных атомов с периодом полураспада 3.825 суток. Сколько атомов радона распадается за сутки?

30. За восемь суток распалось 75% начального количества ядер радиоактивного изотопа. Определить (в сутках) период полураспада.


ОПТИКА Вариант № 18

 

1. Тонкая прозрачная пластинка освещается нормально падающим монохроматическим светом с длиной волны 500 нм. Найти (в нм) наименьшую разность хода лучей, отраженных от поверхностей пластинки, при которой пластинка в отраженном свете выглядит черной.

2. Клиновидная стеклянная пластинка с показателем преломления 1.5 освещается нормально падающим монохроматическим светом с длиной волны 600 нм. На сколько нанометров отличается толщина пластинки в местах наблюдения двух соседних интерференционных полос равной толщины.

3. Установка для наблюдения колец Ньютона освещается светом с длиной волны 600 нм. Определить (в нм) толщину воздушной прослойки между линзой и стеклянной пластинкой в месте наблюдения первого темного кольца Ньютона в проходящем свете.

4. Прозрачная пластинка толщиной 2.4 мкм освещена лучами оранжевого цвета с длиной волны 0.6 мкм. Свет падает нормально, показатель преломления вещества пластинки равен 1.5. В какой цвет окрашена пластинка при наблюдении ее в отраженном свете. Ответы:
1) в оранжевый; 2) в черный; 3) ближе к красному; 4) ближе к фиолетовому.

5. Два когерентных источника света с длиной волны 600 нм находятся на расстоянии 3 м от экрана и на расстоянии 0.9 мм друг от друга. Найти (в мм) расстояние между соседними интерференционными полосами на экране.

6. В спектре, полученном с помощью дифракционной решетки, спектральную линию наблюдают в первом порядке под углом 8.36 град. Определить наивысший порядок спектра, в котором можно наблюдать эту линию с помощью той же дифракционной решетки, если свет падает на решетку нормально к ее поверхности.

7. Дифракционная решетка освещается белым светом. При этом, начиная со спектров второго и третьего порядков, наблюдается частичное их перекрытие. На какую (в нм) длину волны в спектре третьего порядка накладывается красная линия (длина волны 660 нм) спектра второго порядка?

8. На щель шириной 2 мкм падает нормально параллельный пучок монохроматического света с длиной волны 589 нм. Найти (в градусах) угол, в направлении которого наблюдается третий минимум.

9. Постоянная дифракционной решетки равна 10–2 мм. Решетка освещается монохроматическим светом длиной волны 0.5 мкм. Под каким (в градусах) углом наблюдается десятый дифракционный максимум.

10. Период дифракционной решетки 10 мкм. Найдите (в см) ширину решетки, если она в спектре второго порядка обеспечивает разрешение спектральных линий 588.0 нм и 588.1 нм.

11. Луч 1 (см. рисунок) естественного света падает на плоскопараллельную стеклянную пластинку. Угол падения равен углу полной поляризации. При таком угле падения на стекло интенсивность отраженного луча составляет 0.1 от интенсивности падающего естественного света. Определить интенсивность света в луче 4, приняв интенсивность падающего света за единицу. Поглощением света в пластине можно пренебречь.

12. Определить коэффициент отражения стекла, показатель преломления которого равен 1.5, при условии, что луч естественного света падает на его поверхность под углом Брюстера.

13. Определить (в градусах) угол полной поляризации при отражении света от стекла, показатель преломления которого равен 1.57.

14. Луч естественного света падает на плоскопараллельную стеклянную пластинку. Угол падения равен углу полной поляризации. Какую часть интенсивности падающего естественного света составит при этом интенсивность отраженного луча? Показатель преломления стекла 1.52.

15. После подключения источника постоянного напряжения к пластинам конденсатора, погруженного в нитробензол, возникает искусственная анизотропия. В результате нитробензол становится как бы двупреломляющим кристаллом, в котором показатель преломления необыкновенного луча больше показателя преломления обыкновенного луча. Как зависит разность показателей преломления от напряженности электрического поля между пластинами? Ответы:
1) разность показателей преломления прямо пропорциональна напряженности поля;
2) разность показателей преломления пропорциональна квадрату напряженности поля;
3) разность показателей преломления не зависит от напряженности поля.

16. Энергетическая светимость серого тела при температуре 200 К равна 270 кДж/(м2×час). Определить коэффициент черноты этого тела.

17. Укажите ошибочное утверждение, касающееся теплового излучения.
1) электромагнитное излучение испускается телами в виде отдельных квантов, энергия которых пропорциональна частоте излучения.
2) под интегральной энергетической светимостью тела понимается поток энергии, испускаемый единицей поверхности тела по всем направлениям.
3) закон Кирхгора утверждает, что лучеиспускательная и поглощательная способности тела есть величины постоянные и от природы и свойств самого тела не зависящие.

18. Исследование спектра излучения Солнца показывает, что максимум его излучательной способности приходится на длину волны 567 нм. Принимая Солнце за абсолютно черное тело, определить (в МВт/м2) его интегральную светимость.

19. Имеются два абсолютно черных тела. Температура первого тела 2500 К. Найти температуру второго тела, если длина волны, отвечающая максимуму его испускательной способности, на 0.5 мкм больше длины волны, соответствующей максимуму испускательной способности первого тела.

20. Закон Стефана-Больцмана устанавливает связь между... и...
а) лучеиспускательной способностью абсолютно черного тела;
б) интегральной энергетической светимостью абсолютно черного тела;
в) поглощательной способностью абсолютно черного тела;
г) абсолютной температурой абсолютно черного тела;
д) длиной волны теплового излучения абсолютно черного тела;
е) универсальной функцией Кирхгофа.
Ответы: 1) а, б; 2) б, в; 3) в, г; 4) а, в; 5) г, д; 6) б, е; 7) а, д; 8) б, г; 9) д, е; 10) а, е.

21. Фотоэффект у некоторого металла начинается при частоте падающего света 6×1014 Гц. Найти (в эВ) работу выхода электронов из этого металла.

22. При облучении поверхности цезия светом с длиной волны 460 нм задерживающий потенциал равен 0.8 В. Определить (в нм) длину волны красной границы фотоэффекта для цезия.

23. Фотонами с одинаковой энергией облучают сначала поверхность одного металла, а потом другого. При этом задерживающий потенциал в первом опыте оказался больше, чем во втором на 3 В. На сколько электронвольт различаются работы выхода электрона с поверхности этих металлов?

24. Длина волны красной границы фотоэффекта для цинка 290 нм. Какая (в %) часть энергии фотона, вызывающего фотоэффект, расходуется на работу выхода, если максимальная скорость электронов, вырванных с поверхности металла 106 м/с.

25. Найти частоту излучения, вырывающего из металла электроны, полностью задерживаемые потенциалом 1 В. Работу выхода электрона из металла принять равной 5.3 эВ.

26. За четверо суток распалась половина начального количества ядер радиоактивного изотопа. Определить постоянную распада.

27. Найти массовое число ядра изотопа, образующегося из урана (порядковый номер в таблице Менделеева 92, массовое число ядра 238) после трех альфа-распадов и двух электронных бета-распадов.

28. Определить массовое число ядра изотопа, образующегося из изотопа тория (массовое число 232) в результате четырех альфа-распадов и двух электронных бета-распадов.

29. Сколько бета-частиц испускает за сутки 1 мкг радиоизотопа фосфора (массовое число равно 32, период полураспада – 14,3 суток).

30. Торий (порядковый номер в периодической системе 90, массовое число ядра 232) является радиоактивным элементом. Сколько альфа-частиц выбрасывает 1 г тория за 1 секунду? Период полураспада тория 1.39×1011 лет. Принять, что 1 год соответствует 3×107 секунд.


ОПТИКА Вариант № 19

 

1. В опыте с зеркалами Френеля расстояние между мнимыми изображениями источника света было равно 0.5 мм. Расстояние от этих изображений до экрана 5 м. В монохроматическом свете интерференционная картина состояла из полос, отстоящих друг от друга на расстояние 5 мм. Определить (в мкм) длину волны света.

2. Тонкая прозрачная пластинка освещается нормально падающим монохроматическим светом с длиной волны 500 нм. Найти (в нм) наименьшую разность хода лучей, отраженных от поверхностей пластинки, при которой пластинка в отраженном свете выглядит черной.

3. Тонкая пленка освещается монохроматическим светом с длиной волны 5.2×10–7 м. Определить (в нм) наименьшую толщину пленки, при которой она будет темной в проходящем свете. Показатель преломления пленки 1.3.

4. Как изменится интерференционная картина на экране в опыте Юнга, если одну из щелей закрыть тонкой плоскопараллельной прозрачной пластинкой? Ответы:
1) увеличится расстояние между интерференционными полосами;
2) картина сдвинется параллельно самой себе;
3) уменьшится расстояние между полосами;

5. При отражении нормально падающего монохроматического света от клиновидного воздушного зазора между двумя стеклянными пластинками наблюдаются полосы равной толщины. Как изменится расстояние между полосами, если зазор между пластинками заполнить прозрачной жидкостью с показателем преломления, большим показателя преломления стекла. Ответы:
1) уменьшится; 2) увеличится; 3) не изменится.

6. Пучок монохроматического света с длиной волны 530 нм нормально падает на дифракционную решетку с периодом 1.5 мкм и общей длиной 12 мм. Определить (в секундах) угловую ширину главного максимума.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных