![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Решение систем уравнений матричным методом. Система уравнений может быть записана в виде
Система уравнений АХ = В, где А = Решение этой системы имеет вид: Х =А-1 В (если Пример. Решить систему Решение: Перепишем систему в виде АХ = В. А = Решение матричного уравнения имеет вид: Х =А-1 В. Найдем А-1:
Откуда Х = следовательно, х = 2, y = 3, z = -2.
Ранг матрицы. Дана прямоугольная матрица
Выделим в этой матрице k произвольных строк и k произвольных столбцов (k k Всякий отличный от нуля минор матрицы, порядок которого равен рангу этой матрицы, называется базисным минором матрицы. Ранг матрицы А будем обозначать через Dk (А). Если Dk (А)=Dk (В), то матрицы А и В называются эквивалентными. Ранг матрицы не изменяется от элементарных преобразований. Под элементарными преобразованиями понимают: 1) замену строк столбцами, а столбцов - соответствующими строками; 2) перестановку строк матрицы; 3) вычерчивание строки, все элементы которой равны нулю; 4) умножение какой-либо строки на число, отличное от нуля; 5) прибавление к элементам одной строки соответствующих элементов другой строки. Пример. Определить ранг матрицы: Решение: Все миноры второго и третьего порядков данной матрицы равны нулю, т.к. элементы строк этих миноров пропорциональны. Миноры же первого порядка (сами элементы матриц) отличен от нуля. Следовательно, ранг матрицы равен 1.
Практически удобно пользоваться следующим приемом: если найден минор k - го порядка Dk, то остается вычислить только те миноры (k +1)го порядка, которые представляют собой «окаймление» Dk. Пример. Определить ранг матрицы: А =
D2 =
Не нашли, что искали? Воспользуйтесь поиском:
|