![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Частотные характеристики типовых звеньев.К простейшим типовым звеньям относятся: · усилительное, · инерционное (апериодическое 1-го порядка), · интегрирующие (реальное и идеальное), · дифференцирующие (реальное и идеальное), · апериодическое 2-го порядка, · колебательное, · запаздывающее.
Частотные характеристики звена определяют его реакцию на гармонический входной сигнал в установившемся режиме (т.е. после завершения переходных процессов). Частотной характеристикой динамического звена называют функцию комплексного аргумента jw, полученную путем формальной замены s на jw в выражении передаточной функции Получим связь частотной характеристики с известными понятиями. Для этого рассмотрим динамическое звено с передаточной функцией W(s) и сигналами, Получим отношение спектров - Таким образом, частотную характеристику динамического звена можно определить как отношение спектра (преобразования Фурье) выходного сигнала к спектру входного сигнала. Знание частотной характеристики звена позволяет определить выходной спектр по входному
Рассмотрим динамическое звено – Получим спектр выходного сигнала – импульсной характеристики Рассмотрим передаточную функцию, состоящую из n-го количества элементов. Последовательность выражений позволяет найти амплитуду и фазу колебаний на выходе системы при гармоническом воздействии на ее входе. Модуль этого выражения показывает, во сколько раз увеличивается или уменьшается амплитуда колебаний на выходе системы по сравнению с амплитудой колебаний на входе. Аргумент вектора F(jω) описывает фазовый угол колебаний по отношению колебаниям на входе => (*) определяет частотную характеристику, называемую амплитудно-фазовой частотной характеристикой (АФЧХ). АФЧХ строится на комплексной плоскости
АФЧХ: Вещественные или мнимые частотные характеристики связаны с АЧХ и ФЧХ следующим образом: При анализе САР на устойчивость и качества процесса регулирования, а также при решении других задач, часто обращаются к ЛЧХ Усиление L(ω) = 20lg|Ф(jω)| = 20lgA(ω) [дБ] – является единицей логарифмической относительно величины. Изменения относительно двух величин в 10 раз соответствует изменению усиления на 20 дБ. Известно, что АЧХ представляет собой отношение 2-х амплитуд: входного и выходного сигналов.
Версия по Петрову: К простейшим типовым звеньям относятся: · усилительное, · инерционное (апериодическое 1-го порядка), · интегрирующие (реальное и идеальное), · дифференцирующие (реальное и идеальное), · апериодическое 2-го порядка, · колебательное, · запаздывающее. Частотные характеристики усилительного звена можно получить по его передаточной функции, при этом АФХ, АЧХ и ФЧХ определяются следующими соотношениями:
Частотные характеристики интегрирующего звена определяются соотношениями: Не нашли, что искали? Воспользуйтесь поиском:
|