ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Энтропия и ее изменение при различных процессахВ большинстве химических процессов одновременно происходит два явления: передача энергии и изменение в упорядоченном расположении частиц относительно друг друга. Все частицы (молекулы, атомы, ионы) стремятся к беспорядочному движению, поэтому система стремится перейти из более упорядоченного состояния в менее упорядоченное. Количественной мерой беспорядка (хаотичности, неупорядоченности) системы является энтропия S. Например, если баллон с газом соединить с пустым сосудом, то газ из баллона распределится по всему объему сосуда. Система из более упорядоченного состояния перейдет с менее упорядоченное, значит, энтропия при этом увеличится (ΔS > 0). Энтропия всегда возрастает (ΔS > 0) при переходе системы из более упорядоченного состояния в менее упорядоченное: при переходе вещества из кристаллического состояния в жидкое и из жидкого в газообразное, при повышении температуры, при растворении и диссоциации кристаллического вещества и т.д. При переходе системы из менее упорядоченного состояния в более упорядоченное энтропия системы уменьшается (ΔS < 0), например при конденсации, кристаллизации, понижении температуры и т.д. В термодинамике изменение энтропии связано с теплотой выражением: dS = δQ/T или ΔS=ΔH / T Энтропии веществ, как и их энтальпии образования относят к стандартным условиям. Стандартная энтропия 1 моль обозначается S0298, это справочная величина, измеряется в Дж/(К·моль) (Прил.2). Например, стандартная энтропия льда……………..S0298 = 39,7 Дж/(К·моль); воды…………….S0298 = 70,08 Дж/(К·моль); водяного пара…..S0298 = 188,72 Дж/(К·моль), т.е. энтропия возрастает – степень беспорядка вещества в газообразном состоянии больше. У графита S0298 = 5,74 Дж/(К·моль), у алмаза S0298 = 2,36 Дж/(К·моль), так как у веществ с аморфной структурой энтропия больше, чем с кристаллической. Энтропия S0298, Дж/(К·моль) растет с усложнением молекул, например:
Или:
В ходе химических реакций энтропия также изменяется, так, при увеличении числа молекул газообразных веществ энтропия системы возрастает, при уменьшении - понижается. Изменение энтропии системы в результате протекания процессов определяется по уравнению: ΔS0 = ∑ ΔS0прод. - ∑ ΔS0исх. Например: в реакции С(графит) + СО2(г) = 2СО(г); ΔS0298 = 87,8 Дж/К В левой части уравнения 1 моль газообразного вещества СО2(г), а в правой – 2 моль газообразного вещества 2СО(г), значит, объем системы увеличивается и энтропия возрастает (ΔS > 0). С увеличением энтропии (ΔS > 0) протекают также реакции: 2 Н2О(г) = 2 Н2(г) + О2(г) 2 Н2О2(ж)= 2 Н2О(ж) + О2(г) СаСО3(к) = СаО(к) + СО2(г), ΔS0298 = 160,48 Дж/К В реакции образования аммиака N2(г) + 3 H2(г) = 2 NH3(г); ΔS0298 = - 103,1 Дж/К Объем системы уменьшается, поэтому и энтропия понижается (ΔS < 0). С уменьшением энтропии (ΔS < 0) протекают реакции: 3 H2(г) + N2(г) = 2 NH3(г) 2 H2(г) + О2(г) = 2 H2O(ж) В реакциях между твердыми веществами и в процессах, в которых количество газообразных веществ не меняется, энтропия практически не меняется и ее изменение определяется структурой молекул или структурой кристаллической решетки, например: С(графит) + О2(г) = СО2(г), ΔS0298 = 2,9 Дж/К Al(к) + Sb(к) = AlSb (к), ΔS0298 = - 5,01 Дж/К Пример №1. Рассчитайте и объясните изменение энтропии для процесса 2SO2(г) + O2(г) = 2SO2(г) Решение. Выпишем из Прил. 2 значения стандартных энтропий веществ
Согласно следствию из закона Гесса, ΔS0 = 2 S0SO3(г) – (2 S0SO2(г) + S0O2(г)) = 2 · 256,23 – (2 · 248,1 + 205,04) = - 188,78 Дж/К. Так как ΔS < 0, энтропия уменьшается вследствии уменьшения объема системы, т.е. уменьшения числа молей газообразных веществ (в левой части 3 моль газообразных веществ, в правой – 2 моль). Пример №2. Рассчитайте и объясните изменение энтропии для процесса: Сu2S(к) + 2 O2(г) = 2 CuO(к) + SO2(г) Решение. Выпишем из Прил. 2 значения стандартных энтропий веществ
Согласно следствию из закона Гесса, ΔS0 = (2 S0CuO (к) + S0SO2(г)) – (S0Cu2S(к) + 2 S0O2(г)) = (2 · 42,64 + 248,1) – (119,24 + 205,04) = 9,1 Дж/К. Энтропия незначительно увеличивается, это объясняется усложнением структуры молекулы SO2(г) по сравнению с молекулой O2(г). Пример №3. Определить изменение энтропии для процесса: С(графит) + О2(г) = СО2(г) Решение: Выпишем из Прил. 2 значения стандартных энтропий
Тогда ΔS0 = S0СО2(г) – (S0С(г) + S0О2(г)) = 213,68 – (5,74+ 205,04) = 2,9 Дж/К. Так как ΔS > 0, энтропия в процессе реакции незначительно увеличивается. Объем системы не изменяется, но энтропия растет вследствие усложнения структуры молекулы СО2 по сравнению с молекулой О2.
Энергия Гиббса Самопроизвольно, т.е. без затраты энергии извне, система может переходить только из менее устойчивого состояния в более устойчивое. В химических процессах одновременно действуют два фактора: - тенденция к переходу системы в состояние с наименьшей внутренней энергией, что уменьшает энтальпию системы (ΔH → min); - тенденция к переходу системы к более беспорядочному состоянию, что увеличивает энтропию (ΔS → max). Изменение энергии системы называется энтальпийным фактором, количественно он выражается через тепловой эффект реакции ΔH. Он отражает тенденцию к образованию связей и укрупнению частиц. Возрастание энтропии в системе называется энтропийным фактором, количественно он выражается в единицах энергии (Дж) и рассчитывается как T·ΔS. Он отражает тенденцию к более беспорядочному расположению частиц, к распаду веществ на более простые частицы. Суммарный эффект этих двух противоположных тенденций в процессах, протекающих при постоянных Т и Р, отражается изменением изобарно-изотермического потенциала или свободной энергии Гиббса ΔG и выражается уравнением: ΔG = ΔH – T · ΔS При постоянном давлении и температуре (изобарно-изотермический процесс) самопроизвольно протекают реакции в сторону уменьшения энергии Гиббса. По характеру изменения энергии Гиббса можно судить о принципиальной возможности или невозможности осуществления процесса. Если ΔG < 0, реакция может протекать самопроизвольно в прямом направлении. Чем больше уменьшение энтальпийного фактора и возрастание энтропийного фактора, тем сильнее стремление системы к протеканию реакции. При этом энергия Гиббса в исходном состоянии системы больше, чем в конечном. Если энергия Гиббса ΔG > 0, реакция самопроизвольно в прямом направлении протекать не может. Если ΔG=0, система находится в состоянии химического равновесия, энтальпийный и энтропийный факторы равны (ΔH = T · ΔS). Температура, при которой ΔG = 0, называется температурой начала реакции: T = ΔH /ΔS. При этой температуре и прямая и обратная реакция равновероятны. Возможность (или невозможность) самопроизвольного протекания реакции при различных соотношениях величины ΔH и ΔS представлена в таблице.
Пример №1. Исходя из значений ΔH0 и ΔS0 рассчитайте ΔG0 реакции
Сu2S(к) + 2 O2(г) = 2 CuO(к) + SO2(г) Укажите возможность ее протекания в стандартных условиях в закрытой системе. Решение: Изменение свободной энергии Гиббса в химической реакции при стандартных условиях (Т = 298 К, Р = 101325 Па) рассчитывается по уравнению ΔG0 = ΔH0 – T · ΔS0. Тепловой эффект химической реакции ΔH0 = - 545,5 кДж (см. расчет выше). Изменение энтропии в химической реакции ΔS0 = -9,1 Дж/К (см. расчет выше). При расчете ΔG0 нужно учитывать, что ΔH0 выражается в кДж, а ΔS0 в Дж/К, для этого ΔS0 нужно умножить на 10-3. Изменение свободной энергии Гиббса в химической реакции ΔG0 = ΔH0 - T·ΔS0 = - 545,5 – [298 (9,1)10-3] = -548,21 кДж. Так как ΔG0 < 0, следовательно, в стандартных условиях самопроизвольное протекание данной химической реакции в прямом направлении возможно. Пример №2. Исходя из значений ΔH0 и ΔS0 рассчитайте ΔG0 реакции
MgСО3(к) = MgО(к) + СО2(г) Укажите возможность ее протекания при стандартных условиях в закрытой системе. При какой температуре начнется разложение карбоната кальция? Решение: Выпишем из Приложений1 и 2 значения стандартных этальпий ΔH0f, кДж/моль и энтропий S0, Дж/(К·моль):
Рассчитаем изменение энтальпии и энтропии ΔH0 = (ΔH0 f ,MgО(к) + ΔH0 f ,СО2(г)) - ΔH0 f ,MgСО3(к) = [-601,24 + (-393,5)] – (-1096,21) = 101,46 кДж; ΔS 0 = [S 0MgО(к) + S 0СО2(г)] - S0 MgСО3(к) = [26,94 + 213,6] – 112,13 = 128,41 Дж/К. ΔG0 = ΔH0 – T · ΔS0 = 101,46 – 298· 128,41 ·10 -3 = 63,19 кДж. Так как ΔG0 > 0, следовательно, протекание данной реакции при стандартных условиях невозможно. Поскольку ΔH > 0 и ΔS > 0, можно сделать вывод, что реакция может самопроизвольно протекать при достаточно высокой температуре. Рассчитаем температуру, при которой начинается разложение карбоната магния: Т = ΔH0/ ΔS0 = 101,46/(128,41 · 10-3) = 790,12 К (517,12 0С). При температуре 790,12 К равновероятны и прямая и обратная реакции. При температуре выше 790,12 К будет протекать прямая реакция, т.е будет происходить разложение карбоната магния.
Не нашли, что искали? Воспользуйтесь поиском:
|