![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Затухающие колебанияКраткая теория Колебательным движением называется всякое движение или изменение состояния, характеризуемое той или иной степенью повторяемости во времени значений физических величин, определяющих это движение или состояние. Колебания свойственны всем явлениям природы: пульсирует излучение звезд; с высокой степенью периодичности вращаются планеты Солнечной системы; ветры возбуждают колебания и волны на поверхности воды; внутри любого живого организма непрерывно происходят разнообразные, ритмично повторяющиеся процессы, например, с удивительной надежностью бьется человеческое сердце. В физике выделяются колебания механические и электромагнитные. С помощью распространяющихся механических колебаний плотности и давления воздуха, воспринимаемых нами как звук, а также очень быстрых колебаний электрических и магнитных полей, воспринимаемых нами как свет, мы получаем большое число прямой информации об окружающем мире. Примерами колебательного движения в механике могут быть колебания маятников, струн, мостов и т.д. Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени. Простейшим типом периодических колебаний являются гармонические колебания. Гармоническими называются колебания, при которых изменение колеблющейся величины со временем происходит по закону синуса (или косинуса):
где x – смещение от положение равновесия; А – амплитуда колебания – максимальное смещение от положения равновесия;
В случае строго гармонических колебаний величины А, Циклическая частота
Периодом Т колебаний называется наименьший промежуток времени, по истечении которого повторяются значения всех физических величин, характеризующих колебания. Частотой Циклическая частота
Колебания, возникающее в системе, не подверженной действию переменных внешних сил, в результате какого-либо начального отклонения этой системы от состояния устойчивого равновесия, называются свободными (или собственными). Если система консервативная, то при колебаниях не происходит рассеяния энергии. В этом случае свободные колебания называются незатухающими.
Скорость
Ускорение
Уравнение (4) показывает, что ускорение при гармонических колебаниях – переменно, следовательно, колебание обусловлено действием переменной силы. Второй закон Ньютона позволяет в общем виде записать связь между силой F и ускорением
где к – коэффициент упругости. Таким образом, сила, вызывающая гармонические колебания, пропорциональна смещению и направлена против смещения. В связи с этим можно дать динамическое определение гармонического колебания: гармоническим называется колебание, вызываемое силой, прямо пропорциональной смещению х и направленной против смещения. Возвращающей силой может быть, например, сила упругости. Силы, имеющие иную природу, чем упругие силы, но также удовлетворяющие условию (5), называются квазиупругими. В случае прямолинейных колебаний вдоль оси х ускорение
Подставив это выражение для ускорения
Решением этого уравнения является уравнение (1).
Затухающие колебания Все реальные колебательные системы являются диссипативными. Энергия механических колебаний такой системы постепенно расходуется на работу против сил трения, поэтому свободные колебания затухают – их амплитуда постепенно уменьшается. При небольших скоростях движения силы, вызывающее затухание колебаний, пропорциональны величине скорости
где Знак минус указывает, что сила сопротивления всегда направлена в сторону, противоположную направлению движения. Запишем второй закон Ньютона для затухающих прямолинейных колебаний тела:
Решив это дифференциальное уравнение, получим уравнение затухающих колебаний материальной точки:
где
Скорость затухания колебаний оценивается величиной Логарифмический декремент затухания
Выясним физический смысл величин Следовательно, коэффициент затухания Пусть N – число колебаний, после которых амплитуда уменьшается в Тогда Следовательно, логарифмический декремент затухания
Механические волны Если в упругую среду поместить колеблющееся тело (источник колебаний), то соседние с ним частицы среды тоже придут в колебательное движение. Колебания этих частиц передается силами упругости соседним частицам среды и т.д. Через некоторое время колебание охватит всю среду. Процесс распространения колебаний в среде называется волной. Основное свойство всех волн, независимо от их природы, состоит в том, что в волне осуществляется перенос энергии без переноса вещества. Волны могут различаться по тому, как возмущения ориентированы относительно направления их распространения. Если колебания частиц происходят в том же направлении, что и распространение энергии, волны называются продольными. Если же колебания частиц перпендикулярны к направлению распространения энергии, то такие волны называются поперечными. Продольные волны образуются в результате деформаций сжатия или растяжения. Поперечные волны возникают при деформациях сдвига. В твердых телах упругие силы возникают при деформациях растяжения, сжатия и сдвига, поэтому в твердых телах могут возникать как продольные, так и поперечные волны. В жидкостях и газах упругие силы возникают только при сжатии и не возникают при сдвиге, поэтому в газах и жидкостях механические волны могут быть только продольными.
Уравнение волны – это уравнение, позволяющее определить смещение любой точки волны в любой момент времени. Пусть источником колебания является точка О, колеблющаяся гармонически по закону: Все частицы среды придут в гармоническое колебание с такой же частотой и амплитудой, но с различными фазами. В среде возникает волна. Тогда уравнение колебания частицы В, находящейся на расстоянии
где
Тогда уравнение (1) можно переписать:
![]()
Уравнение (2), позволяющее определить смещение любой точки волны в любой момент времени, является уравнением волны. Основными характеристиками волн являются: длина волны период волны Т – время, за которое совершается один полный цикл колебания. Длина волны
где
Подставляя выражение (3) в (2) и учитывая, что Выражение
В точках, отстоящих друг от друга на целое число длин волн В точках, отстоящих друг от друга на нечетное число длин полуволн, т.е. для которых
Интерференция волн Если в данную точку среды приходят две волны, то их действие складывается. Особо важное значение имеет сложение когерентных волн. Когерентными называются волны, имеющие постоянную во времени разность фаз. Интерференция волн – это сложение в пространстве когерентных волн, при котором в разных его точках получается усиление или ослабление амплитуды результирующей волны. В результате получается интерференционная картина в виде чередующихся максимумов и минимумов. В точках, куда обе волны приходят в фазе, они усиливают друг друга, т.е. если В точках, куда обе волны приходят в противофазе, они ослабляют друг друга:
Условия максимума (1) и минимума (2) можно еще записать и так:
(3)
Разность
Стоячие волны Важным случаем интерференции волн является сложение двух когерентных волн, движущихся навстречу друг другу вдоль одной прямой. При наложении этих волн возникает стоячая волна – периодическое во времени синфазное колебание с характерным пространственным распределением амплитуды – чередованием узлов и пучностей. Стоячая волна может быть получена, если прямая волна, посланная вибратором к препятствию, наложится на отраженную от него волну. Уравнение стоячей волны получим сложением уравнения прямой волны и уравнения отраженной волны, движущейся в направлении противоположном прямой волне Смещение точки, участвующей одновременно в двух колебаниях, равно: Из тригонометрии известно, что Поэтому окончательно получим уравнение стоячей волны:
где Точки, в которых амплитуда максимальная, называются пучностями (точки 1,3,5). Точки, в которых амплитуда равна нулю, в колебании не участвуют и называются узлами (точки 2,4,6)
1 2 3 4 5 6
Расстояние между соседними узлами (или пучностями) называется длиной стоячей волны:
где В отличие от бегущей волны в стоячей волне не происходит переноса энергии, а осуществляется лишь пространственная перекачка энергии одного вида в энергию другого вида.
Не нашли, что искали? Воспользуйтесь поиском:
|