Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Вопрос. Связи, формирующие первичную структуру полинуклеотидных цепей. Вторичная структура ДНК и РНК




Под первичной структурой нуклеиновых кислот понимают порядок, после-

довательность расположения мононуклеотидов в полинуклеотидной цепи ДНК и РНК. Такая цепь стабилизируется 3',5'-фосфодиэфирными связями.

Вторичная структура. В соответствии с моделью Дж. Уотсона и Ф. Крика, предложенной в 1953 г. на основании ряда аналитических данных, а также рентгеноструктурного анализа, молекула ДНК состоит из двух цепей, образуя право-вращающую спираль, в которую обе полинуклеотидные цепи закручены вокруг одной и той же оси. Удерживаются цепи благодаря водородным связям, образующимся между их азотистыми основаниями. Обе цепи полинуклеотидов в биспиральной молекуле ДНК имеют строго определенное пространственное расположение, при котором азотистые основания находятся внутри, а фосфорильные и углеводные компоненты – снаружи. Избирательность взаимодействия пар А–Т и Г–Ц принято выражать термином «комплементарность», а соответствующие азотистые основания на-

зывают комплементарными. Уникальность структуры молекул ДНК и РНК определяются закономерностями, впервые установленными Э. Чаргаффом:

1) молярная масса пуринов равна молярной массе пиримидинов А+Г=Ц+Т;

2) количество аденина и цитозина равно количеству гуанина и тимина: А+Ц=Г+Т;

3) количество аденина равно количеству тимина, а количество гуанина равно количеству цитозина.

Стабильность А–Т оснований обеспечивается двумя водородными связями, а пар Г–Ц – тремя. Длина водородных связей между основаниями составляет около 0,3 нм, расстояние между витками (шаг спирали) равно 3,4 нм. На этом участке укладываются 10 нуклеотидных остатков, размер одного нуклеотида составляет 0,34 нм; диаметр биспиральной молекулы равен 1,8 нм.

Менее охарактеризована вторичная структура матричных и рибосомных РНК. Относительно вторичной структуры тРНК наиболее вероятной представляется модель, предложенная Р. Холли, плоское изображение которой напоминает клеверный лист. Во всех тРНК есть участки, взаимодействующие с рибосомами, места для связывания с аминокислотами и ферментами, а также специфическая последовательность трех нуклеотидов (триплет), называемая анти-

кодоном, которая оказывается комплементарной тринуклеотидной последовательности мРНК (кодону), кодирующей включение в белковую молекулу определенной аминокислоты.

Третичная структура нуклеиновых кислот.

Исследования молекул ДНК при помощи физических (в частности, кристаллографических) и физико-химических методов показали, что двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы. Оказалось также, что линейная ДНК может образоваться из кольцевой формы или существовать как таковая в природе. Образование кольцевой формы молекулы ДНК у бактерий или в митохондриях клеток животных часто вызвано ковалентным соединением их открытых концов. Известно, что суперспиральная (суперскрученная) структура обеспечивает экономную упаковку огромной молекулы ДНК в хромосоме: вместо 8 см длины, которую она могла бы иметь в вытянутой форме, в хромосоме человека молекула ДНК настолько плотно упакована, что ее длина составляет 5 нм. Обычно в ДНК встречаются положительные

и отрицательные супервитки, образованные за счет скручивания по часовой (правосторонней) или против часовой стрелки двойной спирали. Образование подобных супервитков катализируется специфическими ферментами,

получившими название топоизомераз. Подобные суперспирали соединяются с белками (гистонами), упакованными в бороздках, обеспечивая тем самым стабильность третичной структуры ДНК.

Данные о структуре тРНК свидетельствуют о том, что нативные молекулы тРНК имеют примерно одинаковую третичную структуру, которая отличается от плоской структуры «клеверного листа» большой компактностью за счет складывания различных частей молекулы. Третичная структура РНК в растворе в зависимости от ионной силы, температуры и рН среды может быть представлена компактной палочкой, компактным клубком; развернутой цепью.

В настоящее время получены доказательства значимости ван-дер-ваальсовых (диполь-дипольных и лондоновских) связей между азотистыми основаниями в стабилизации общей пространственной конфигурации нуклеиновых кислот.

 

5.2 вопрос. Сложные белки: строение,характеристика тодельных групп, биологическая роль. Нуклеопротеины, химическое строение ДНК, РНК, биологическая роль.

Сложные белки содержат два компонента: белковую и небелковую части, называемые простетической группой. В зависимости от характера этой группы различают: хромопротеины, нуклеопротеины, металлопротеины, фосфопротеины, гликопротеины,липопротеины.
Нуклеопротеины состоят из белков и нуклеиновых кислот. В природе обнаружено 2 типа нуклеопротеинов- дезоксирибонуклеопротеины(ДНП) и рибонуклеопротеины(РНП). Их названия отражают только природу углеводного компонента, входящего в состав нуклеиновых кислот. Доказано, что ДНП преимущественно локализованы в ядре, а РНП в цитоплазме.В тоже время ДНП открыты в митохондриях, а в ядоах и ядрышках обнаружены также высокомолекулярные РНК.

Многообразие проявлений жизни непосредственно связано с этими полимерными молекулами. Природа синтезированных в клетках белков зависит в первую очередь от природы ДНП, а точнее ДНК, а свойства живых организмов, как и структурная организация субклеточных органелл, клеток и целостного организма, определяются свойствами синтезированных белков. ДНК хранит наследственную информацию. При трансформации происходит превращение одного генетического типа клеток в другой путем изменения природы ДНК.С нуклеопротеинами и соответственно нуклеиновыми кислотами непосредственно связаны такие биологические процессы, как митоз, мейоз. Эмбриональный и злокачественный рост и др В состав хроматина входит ДНК, пять различных классов белков- гистонов и так называемых негистоновых белков.Относительно белкового состава ДНК, известно, что все 5 классов гистонов различаются по размерам, аминокислотному составу и величине заряда(всегда +).

В различных нуклеопротеинах количество нуклеиновой кислоты колеблется от 40 до 65%.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных