Главная | Случайная
Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Ферменты. Биологическая роль в детском организме. Классификация и номенклатура ферментов. Особенности синтеза и секреции ферментов у детей.




Первое научное представление о ферментах было дано еще в 1814 году петербургским ученым Кирхгофом, который показал. Что не только поросшие зерна ячменя. Но и экстракты из солода способны осахарить крахмал с превращением его в мальтозу. Вещество, извлекаемое из проросшего ячменя и обладающее способностью превращать крахмал в мальтозу, получило название амилазы.

Ферменты или энзимы (Е) - это специфические белки, содержащиеся во всех клетках организма человека и являющиеся биологическими катализаторами.

Ферменты являются посредниками между организмом и окружающей средой, обеспечивают адаптацию организма к изменяющимся условиям (авторегуляторы).

В онтогенезе отмечается разнообразие возрастных изменений индукции ферментов. Разные периоды индукции определяют необходимость синтеза тех или иных ферментов. Важнейшим фактором, меняющим метаболизм детского организма, служит изменение условий питания, в частности, характер вводимой пищи. Это положение относится не только к гидролитическим ферментам желудочно-кишечного тракта. От количества и состава пищи зависит активность и тканевых энзимов. Например, на рационе, содержащем много белка в пище, наблюдается увеличение активности ферментов, синтезирующих мочевину и превращение аминокислот. Номенклатура.

1.Тривиальные названия ферментов (пепсин, трипсин, химотрипсин).

2.Название субстрата + суффикс –аза (липиды – липаза, сахароза – сахараза, мальтоза – мальтаза).

3. По типу катализируемой реакции (дегидрирование – дегидрогеназа, карбоксилирование – карбоксилаза).

Основой классификации ферментов служит тип катализируемой реакции. Согласно данной классификации ферменты делят на шесть классов:

1. Оксидоредуктазы (катализируют окислительно-восстановительные реакции).

2. Трансферазы (катализируют реакции межмолекулярного переноса атомов, групп атомов, радикалов).

3. Гидролазы (катализируют расщепление внутримолекулярных связей органических молекул с участием воды).

4. Изомеразы (катализируют взаимопревращения оптических и геометрических изомеров).

5. Лиазы (катализируют разрыв связей С-О, С-С, С-N, а также обратимые реакции отщепления различных групп от субстратов негидролитическим путем).

6. Лигазы (катализируют синтез органических веществ из двух исходных молекул с использованием энергии распада АТФ).

Классы состоят из подклассов, подклассы из подподклассов.

Химическая природа и строение ферментов. Активный (каталитический) и аллостерический (регуляторный) центры. Строение простых и сложных ферментов (гидролазы, дегидрогеназы, трансаминазы)..

По составу ферменты делятся на простые и сложные.
Простые ферменты состоят из аминокислот. К ним относятся ферменты желудочно-кишечного тракта – α-амилаза, пепсин, трипсин, липаза и др. Все эти ферменты относятся к 3 классу – гидролаз.
Сложные ферменты состоят из белковой части – апофермента и небелковой – кофактора. Каталитически активный комплекс «фермент – кофактор» называется холоферментом. В качестве кофакторов могут выступать как ионы металлов, так и органические соединения, многие из которых являются производными витаминов.
Активный центр – это относительно небольшой участок, расположенный в узком гидрофобном углублении (щели) поверхности молекулы фермента, непосредственно участвующий в катализе. Активный центр – это точная пространственная организация больших ансамблей, построенных из аминокислотных остатков: серин – ОН группа; цистеин – SH группа; лизин – NH2 группа; гистидин – имидазольное кольцо; глутаминовая, аспарагиновая кислоты – СООН группа.Активный центр включает субстратсвязывающий участок, который отвечает за специфическое комплементарное связывание субстрата, и каталитический участок непосредственного химического взаимодействия.В активный центр сложных ферментов входит участок для связывания кофактора. Регуляторные (аллостерические) ферменты помимо активного центра имеют аллостерический центр. К аллостерическому центру могут присоединяться гормоны или продукты реакции. Это приводит к изменению структуры активного центра. Эти вещества называются аллостерическими эффекторами (модификаторами). Эффекторы могут быть положительными (усиливают действие фермента) и отрицательными (блокируют действие фермента).

3.4.Сходство и отличие ферментов и неорганических катализаторов. Зависимость скорости ферментативных реакций от температуры, рН. Виды специфичности.

Ферментативная реакция – это многостадийный процесс. На первой стадии происходит сближение и ориентация, а также устанавливается индуцированное комплементарное соответствие между ферментом и субстратом, в результате образуется фермент-субстратный комплекс (ЕS).

На второй стадии возникает напряжение и деформация субстрата, в результате чего происходит сдвиг электронной плотности, изменение степени поляризации, связи в молекуле субстрата деформируются и легко распадаются.

В процессе образования фермент-субстратного комплекса достигается переходное состояние, характеризующееся низкой энергией активации, в результате чего образуется новый продукт, а после его диссоциации фермент возвращается в исходное состояние.

На активность ферментов оказывают влияние температура, рН среды, ионная сила растворов.

Так как ферменты по химической природе являются белками, повышение температуры свыше 45-50˚С приводит к тепловой денатурации и ферменты инактивируются (исключение – миокиназа мышц, папаин).

Низкие температуры не разрушают ферменты, а только приостанавливают их действие. Оптимальная температура для проявления активности фермента равна 37-40˚С.

На активность ферментов оказывает влияние реакция среды. Значение рН среды, при котором фермент проявляет максимальную активность, называют оптимумом рН среды для действия данного фермента. РН-оптимум действия ферментов лежит в пределах физиологических значений 6,0-8,0. Исключения: пепсин, рН-оптимум которого равен 2,0; аргиназа – рН-оптимум равен 10,0.

Ферменты обладают специфичностью. Различают несколько видов специфичности:

1. Абсолютная специфичность – фермент взаимодействует только с одним субстратом. Например, уреаза ускоряет гидролиз мочевины, но не расщепляет тиомочевину.

2. Стереоспецифичность – фермент взаимодействует с определенным оптическим и геометрическим изомером.

3. Абсолютная групповая специфичность – ферменты специфичны в отношении характера связи, а также тех соединений, которые образуют эту связь. Например, α-амилаза расщепляет α-гликозидную связь в молекуле мальтозы, состоящей из двух молекул глюкозы, но не расщепляет молекулу сахарозы, состоящую из молекулы глюкозы и молекулы фруктозы.

4. Относительная групповая специфичность. В этом случае ферменты специфичны только в отношении связи, но безразличны к тем соединениям, которые образуют эту связь. Например, протеазы ускоряют гидролиз пептидных связей в различных белках, липазы ускоряют расщепление сложноэфирных связей в жирах.

4.4.Активаторы ферментов: ионы металлов, частичный протеолиз, фосфолирование и дефосфолирование

На скорость химических реакций оказывают влияние различные вещества. По характеру влияния вещества подразделяются на активаторы, увеличивающие активность ферментов, и ингибиторы (парализаторы), подавляющие активность ферментов.
Активирование ферментов могут вызывать:
1)Присутствие кофакторов – ионы металлов Fe²+, Mg²+, Mn²+, Cu²+, Zn²+, АТФ, липоевая кислота.
2)Частичный их протеолиз.
Ферменты желудочно-кишечного тракта вырабатываются в виде неактивных форм – зимогенов. Под влиянием различных факторов происходит отщепление пептида с формированием активного центра и зимоген превращается в активную форму фермента.
Пепсиноген НСl пепсин + пептид
Трипсиноген энтерокиназа трипсин + пептид
Этот вид активирования предохраняет клетки желудочно-кишечного тракта от самопереваривания.
Фосфорилирование и дефосфорилирование.

Например:
неакт. липаза + АТФ → липаза-фосфат (акт.липаза);
липаза-фосфат+Н3РО4 → липаза (неакт. липаза)

 

5.4.Ингибиторы ферментов: обратимые и необратимые,конкурентные. Лекарственные препараты как ингибиторы ферментов.

Ингибиторы по характеру своего действия подразделяются на обратимые и необратимые. В основе такого деления лежит прочность соединения ингибитора с ферментом.

Обратимые ингибиторы – это соединения, которые нековалентно взаимодействуют с ферментом и могут отщепляться от фермента.

Необратимые ингибиторы – это соединения, которые образуют ковалентные, прочные связи с ферментом.

Необратимое ингибирование может быть специфическим и неспецифическим.

При специфическом ингибировании ингибиторы тормозят действие определенных ферментов, связывая отдельные функциональные группы активного центра. Например, тиоловые яды ингибируют ферменты, в активный центр которых входят SН-группы; угарный газ (СО) ингибирует ферменты, имеющие в активном центре Fe²+.

Неспецифические ингибиторы тормозят действие всех ферментов. К ним относятся все денатурирующие факторы (высокая температура, органические и минеральные кислоты, соли тяжелых металлов и др.).

Обратимое ингибирование может быть конкурентным. При этом ингибитор является структурным аналогом субстрата и конкурирует с ним за связывание в субстратсвязывающем участке активного центра.

Отличительная особенность конкурентного ингибирования состоит в том, что его можно ослабить или полностью устранить, повысив концентрацию субстрата.

Сукцинатдегидрогеназа (СДГ) – фермент цитратного цикла, дегидрирует сукцинат, превращая его в фумарат. Малонат, который структурно похож на сукцинат, связывается в активном центре СДГ, но не может дегидрироваться. Поэтому малонат – конкурентный ингибитор СДГ.

Многие лекарственные препараты являются конкурентными ингибиторами ферментов. Например, сульфаниламидные препараты, являясь структурными аналогами парааминобензойной кислоты (ПАБК) – основного фактора роста болезнетворных микроорганизмов, конкурируют с ней за связывание в субстратсвязывающем участке активного центра фермента. На этом основано противомикробное действие сульфаниламидных препаратов.

6.4.Регуляция действия ферментов: аллостерические ингибиторы и активаторы. Регуляция активности по принципу обратной связи.

В некоторых многоступенчатых метаболических путях конечный продукт ингибирует регуляторный (аллостерический) фермент процесса.

При повышении концентрации продукта реакции „Z” он занимает аллостерический центр регуляторного фермента „Е1”. Это приводит к изменению конформации активного центра „Е1”, в результате чего фермент „Е1” ингибируется и не может соединиться с субстратом „А”. Эта регуляция обеспечивает адаптацию организма к изменяющимся условиям. Например,

Треонин Е1 x Е2 y Е3 n изолейцин

 
 


На скорость химических реакций оказывают влияние различные вещества. По характеру влияния вещества подразделяются на активаторы, увеличивающие активность ферментов, и ингибиторы (парализаторы), подавляющие активность ферментов.

Активирование ферментов могут вызывать:

1. Присутствие кофакторов – ионы металлов Fe²+, Mg²+, Mn²+, Cu²+, Zn²+, АТФ, липоевая кислота.

2. Частичный их протеолиз.

Ферменты желудочно-кишечного тракта вырабатываются в виде неактивных форм – зимогенов. Под влиянием различных факторов происходит отщепление пептида с формированием активного центра и зимоген превращается в активную форму фермента.

 

Пепсиноген НСl пепсин + пептид


Трипсиноген энтерокиназа трипсин + пептид

Этот вид активирования предохраняет клетки желудочно-кишечного тракта от самопереваривания.

3. Фосфорилирование и дефосфорилирование. Например:

неакт. липаза + АТФ → липаза-фосфат (акт. липаза);

липаза-фосфат+Н3РО4 → липаза (неакт. липаза)

Активный центр – это относительно небольшой участок, расположенный в узком гидрофобном углублении (щели) поверхности молекулы фермента, непосредственно участвующий в катализе. Активный центр – это точная пространственная организация больших ансамблей, построенных из аминокислотных остатков: серин – ОН группа; цистеин – SH группа; лизин – NH2 группа; гистидин – имидазольное кольцо; глутаминовая, аспарагиновая кислоты – СООН группа.

По первичной структуре эти аминокислотные остатки располагаются на различном расстоянии друг от друга, при образовании вторичной, третичной структур аминокислотные остатки сближаются, формируя активный центр.

Активный центр включает субстратсвязывающий участок, который отвечает за специфическое комплементарное связывание субстрата, и каталитический участок непосредственного химического взаимодействия.

В активный центр сложных ферментов входит участок для связывания кофактора. Регуляторные (аллостерические) ферменты помимо активного центра имеют аллостерический центр. К аллостерическому центру могут присоединяться гормоны или продукты реакции. Это приводит к изменению структуры активного центра. Эти вещества называются аллостерическими эффекторами (модификаторами). Эффекторы могут быть положительными (усиливают действие фермента) и отрицательными (блокируют действие фермента).

Различия ферментного состава органов и тканей. Органоспецифичные ферменты. Определение ферментов в плазме крови с целью диагностики заболеваний. Гиперферментемия. Применение ферментов в качестве лечебных препаратов. Энзимопатии (фенилкетонурия, галактоземия и др.).

Для каждой ткани (органа) характерен определённый ферментный состав (маркерные ферменты). Для сердечной мышцы маркерными ферментами являются - аспартатаминотрансфераза (АсТ), креатинкиназа; для печени – аланинаминотрансфераза (АлТ); для предстательной железы – кислая фосфатаза ( КФ); для поджелудочной железы – α-амилаза и т.д.

Так, при инфаркте миокарда увеличивается уровень активности АсТ, креатиназы; вирусном гепатите – АлТ; раке предстательной железы – кислой фосфатазы; при заболеваниях поджелудочной железы – α-амилазы и т.д.

Некоторые ферменты применяют в качестве лечебных препаратов:

· Пепсин – при нарушении синтеза и секреции пепсина в желудке;

· Трипсин, химотрипсин используются для лечения гнойных ран;

· Фибринолизин, стрептокиназа – для предотвращения тромбообразования при пересадке органов и других операциях;

· Гиалуронидаза обеспечивает рассасывание рубцов;

· Аспарагиназа применяется при лечении некоторых злокачественных образований и т.д.

При отсутствии или недостатке тех или иных ферментов, связанных с мутацией гена, ответственного за синтез белка – фермента, возникают наследственные энзимопатии.

При фенилпировиноградной олигофрении отсутствует фермент гидроксилаза, катализирующая превращение аминокислоты фенилаланина в тирозин. Это приводит к повышению уровня фенилаланина в крови и моче, кроме того, из фенилаланина образуется фенилпировиноградная кислота, что оказывает токсическое действие на центральную нервную систему, в результате чего развивается слабоумие.

При галактоземии отсутствует фермент галактозо-1-фосфат-уридилтрансфе-раза, катализирующий превращение галактоза-1-фосфат в глюкоза-1-фосфат. Это является причиной увеличения галактозы и галактоза-1-фосфат в крови, что сопровождается у детей грудного возраста рвотой, диареей, вздутием живота и т.д.

8.4..Иммобилизованные ферменты, применение в медицине. Изоферменты лактатдегидрогеназы. Значение определения изоферментов в диагностике заболеваний.

Практическое использование ферментов столкнулось с большими трудностями. Первое – это сложность и дороговизна получения достаточных количеств ферментов в чистом виде. Кроме того, ферменты быстро теряют свою активность под действием различных факторов (изменение кислотности среды, температуры, солевого состава и др.)

При использовании ферментов возникают осложнения, в первую очередь иммунологические. Также невозможно создать высокую местную концентрацию фермента при локальных поражениях, так как ферменты не обладают способностью к «направленному транспорту».

Группой под руководством отечественного ученого И. Березина впервые были созданы иммобилизованные ферменты.

Под иммобилизацией ферментов понимают их физическое (адсорбционное) или химическое (ковалентное) связывание с матрицей носителя, которая защищает фермент от инактивирующих воздействий, но в минимальной степени влияет на функционирование его активных центров. Материалом для изготовления носителя могут служить неорганические пористые стекла, силикагели, а также природные или синтетические полимеры.

Разработаны несколько видов иммобилизации.

Наиболее распространены реакции ацилирования, в которые могут вступать амино-окси- и некоторые другие группы белка, при этом чаще всего реакция протекает по аминогруппам лизиновых остатков.

Очень распространена реакция образования азаметиновой связи (оснований Шиффа) между альдегидными группами носителя и аминогруппами белка.

Относительно новый способ получения устойчивых терапевтических ферментов – иммобилизация на соединениях, характерных для самого организма или даже обладающих собственной биологической активностью, дополняющих или усиливающих действие связанного с ними фермента. Примером может служить фибринолизин, иммобилизованный на гепарине, урокиназа – на альбумине.

Наконец, растворимые препараты иммобилизованных ферментов медицинского назначения могут быть получены путем их межмолекулярного слияния. Например, слияние молекул галактозидазы обеспечивает стабилизацию фермента. Одновременно замедляется переваривание фермента и увеличивается время его нахождения в кровотоке.

Иммобилизованные ферменты имеют ряд преимуществ. Они обладают достаточно длительным сроком годности, у них снижена аллергичность и иммуногенность за счет частичной или полной блокады антигенных участков белка макромолекулой носителя, они слабо восприимчивы к действию естественных ингибиторов и проявляют терапевтическую активность в течение длительного времени. Носитель, с которым связан фермент, обеспечивает не только устойчивость, но и направленную доставку фермента предпочтительно в зону поражения, т.е. в определенный орган или ткань.

Область применения иммобилизованных ферментов очень широка. Они могут быть компонентами аналитических систем для клинического биохимического анализа, могут служить для модификации внутренних поверхностей, как различного рода протезов, так и медицинских аппаратов, могут являться компонентами перевязочных и дренирующих материалов, обеспечивающих ускорение заживления и очищения ран.

Если фермент служит для лечения местных поражений (опухолей, тромбов) и его присутствие в других органах нежелательно, то создаются биосовместимые и биоразлагаемые производные ферментов в виде микрочастиц, гранул, таблеток.

Некоторые иммобилизованные ферменты используются для наружного применения, при включении в состав различных мазей или кремов.

Изоферменты – это множественные формы одного и того же фермента. Изоферменты катализируют одну и ту же реакцию, но отличаются по аминокислотному составу и некоторым физико-химическим свойствам (молекулярной массе, электрофоретической подвижности и др.). Например, фермент лактатдегидрогеназа (ЛДГ) существует в пяти формах: ЛДГ1, ЛДГ2, ЛДГ3, ЛДГ4, ЛДГ5.

 

 

ЛДГ катализирует реакцию:

Глюкоза

ЛДГ 4,5

ПВК молочная кислота + 2 АТФ

ЛДГ 1,2

 
 

 

 


СО2 + Н2О + 38 АТФ

 

Каждая ткань имеет определенный изоферментный спектр ЛДГ: в сердечной мышце – ЛДГ1,2; в печени, скелетных мышцах – ЛДГ4,5.

Какова целесообразность синтеза фермента в нескольких молекулярных формах? В тканях с преимущественно аэробным обменом веществ (сердечная мышца), преобладают формы ЛДГ1,2, которые обеспечивают ткани большим количеством энергии. В тканях с преимущественно анаэробным обменом веществ (печень, скелетные мышцы) преобладают ЛДГ4,5, что приводит к образованию молочной кислоты и двух молекул АТФ.

Определение уровня активности изоферментов в сыворотке крови имеет важное значение в диагностике заболеваний. например, повышение активности ЛДГ1,2 наблюдается при инфаркте миокарда; ЛДГ4,5 – при заболеваниях печени (гепатит, цирроз).

При заболеваниях, сопровождающихся некрозом, маркерные (органоспецифичные) ферменты из повреждённых клеток в большом количестве поступают в кровь, и уровень их активности увеличивается, возникает гиперферментемия. Определение уровня активности маркерных ферментов в сыворотке крови имеет клиническое значение в диагностике и прогнозе ряда заболеваний.

Гормоны. Классификация, биологическая роль. Центральная регуляция эндокринной системы. Нервно-рефлекторный и эндокринный пути действия центров гипоталамуса на эндокринный аппарат. Либерины, статины. Строение, биологическая роль.

Гормоны – биологически активные вещества, образуемые железами внутренней секреции в следовых количествах, оказывающие регулирующее влияние на обмен веществ и физиологические функции.

Синтез и секреция гормонов стимулируются внешними и внутренними сигналами, поступающими в различные отделы ЦНС.

Эти сигналы по нейронам поступают в гипоталамус, где стимулируют синтез пептидных рилизинг-гормонов (от англ. release - освобождать).

7 либеринов активируют выработку гипофизарных гормонов и 3 статина, которые тормозят.

По химической природе это пептиды (состоят из 3,10,14 аминокислотных остатков).

Тиролиберин- трипептид (глутаминовая кислота, гистидин, пролин). (ТТГ и пролактин).

 

 

Соматостатин - 14 аминокислотных остатка- угнетает выработку СТГ гипофиза.

Тропные гормоны передней доли гипофиза стимулируют образование и секрецию гормонов периферических эндокринных желез, которые поступают в кровь и накапливаются в определенных органах-мишенях.

АКТГ стимулирует синтез и секрецию гормонов коры надпочечников (минерало- и глюкокортикоидов).

ТТГ- синтез и секрецию гормонов щитовидной железы;

СТГ – на растущие органы и ткани и секрецию и синтез гормонов поджелудочной железы;

Пролактин – на секрецию молочных желез;

ФСГ, ЛГ – на секрецию семенников и яичников

Поддержание уровня гормонов в организме обеспечивает механизм отрицательной обратной связи. Изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов, действуя либо на эндокринные железы, либо на гипоталамус; синтез и секреция тропных гормонов угнетается гормонами периферических желез.

Такие петли обратной связи действуют в системах регуляции гормонов надпочечников, щитовидной железы, половых желез.

Но не все эндокринные железы регулируются подобным образом. Например, гормоны задней доли гипофиза (вазопрессин и окситоцин) синтезируются в гипоталамусе в виде предшественников и хранятся в гранулах терминальных аксонов нейрогипофиза.

Секреция инсулина и глюкагона напрямую зависит от уровня глюкозы.




Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2019 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных