Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Численные методы решения нелинейных уравнений




 

 

Введение

 

Рассмотрим задачу нахождения корней нелинейного уравнения

 

f(x)=0 (3.1)

 

Корнями уравнения (3.1) называются такие значения х, которые при подстановке обращают его в тождество. Только для простейших уравнений удается найти решение в виде формул, т.е. аналитическом виде. Некоторые из таких уравнений подробно изучались в школьном курсе математики. Чаще приходится решать уравнения приближенными методами, наибольшее распространение среди которых, в связи с появлением компьютеров, получили численные методы. В этой работе познакомимся с некоторыми из них.

Алгоритм нахождения корней приближенными методами можно разбить на два этапа. На первом изучается расположение корней и проводится их разделение. Находится область [a,b], в которой существует корень уравнения или начальное приближение к корню x0. Простейший способ решения этой задачи является исследование графика функции f(x). В общем же случае для её решения необходимо привлекать все средства математического анализа.

Существование на найденном отрезке [a,b], по крайней мере, одного корня уравнения (3.1) следует из условия Больцано:

 

f(a) * f(b) < 0 (3.2)

 

При этом подразумевается, что функция f(x) непрерывна на данном отрезке. Однако данное условие не отвечает на вопрос о количестве корней уравнения на заданном отрезке [a,b]. Если же требование непрерывности функции дополнить ещё требованием её монотонности, а это следует из знакопостоянства первой производной , то можно утверждать о существовании единственного корня на заданном отрезке.

При локализации корней важно так же знание основных свойств данного типа уравнения. К примеру, напомним, некоторые свойства алгебраических уравнений:

 

, (3.3)

 

где вещественные коэффициенты.

а) Уравнение степени n имеет n корней, среди которых могут быть как вещественные, так и комплексные. Комплексные корни образуют комплексно-сопряженные пары и, следовательно, уравнение имеет четное число таких корней. При нечетном значении n имеется, по меньшей мере, один вещественный корень.

б) Число положительных вещественных корней меньше или равно числа перемен знаков в последовательности коэффициентов . Замена х на –х в уравнении (3.3) позволяет таким же способом оценить число отрицательных корней.

На втором этапе решения уравнения (3.1), используя полученное начальное приближение, строится итерационный процесс, позволяющий уточнять значение корня с некоторой, наперед заданной точностью . Итерационный процесс состоит в последовательном уточнении начального приближения. Каждый такой шаг называется итерацией. В результате процесса итерации находится последовательность приближенных значений корней уравнения . Если эта последовательность с ростом n приближается к истинному значению корня x, то итерационный процесс сходится. Говорят, что итерационный процесс сходится, по меньшей мере, с порядком m, если выполнено условие:

 

, (3.4)

 

где С>0 некоторая константа. Если m=1, то говорят о сходимости первого порядка; m=2 - о квадратичной, m=3 - о кубической сходимостях.

Итерационные циклы заканчиваются, если при заданной допустимой погрешности выполняются критерии по абсолютным или относительным отклонениям:

 

; (3.5,3.6)

или малости невязки:

 

(3.7)

 

Эта работа посвящена изучению некоторых класических алгоритмом решения нелинейных уравнений, их скоростей сходимости, влиянию на сходимость выбора начального приближения и другим вопросам.

 

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных