ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Проявление явления самоиндукцииЗамыкание цепи
Размыкание цепи
Вывод в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу). ИНДУКТИВНОСТЬ От чего зависит ЭДС самоиндукции? Эл.ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике
Единицы измерения индуктивности в системе СИ:
Индуктивность катушки зависит от:
ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.
Вокруг проводника с током существует магнитное поле, которое обладает энергией. Энергия магнитного поля равна собственной энергии тока. Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока.
Индуктивность — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур. В формуле — магнитный поток, — ток в контуре, — индуктивность. · Нередко говорят об индуктивности прямого длинного провода. В этом случае и других (особенно - в не отвечающих квазистационарному приближению) случаях, когда замкнутый контур непросто адекватно и однозначно указать, приведенное выше определение требует особых уточнений; отчасти полезным для этого оказывается подход (упоминаемый ниже), связывающий индуктивность с энергией магнитного поля. Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока: . Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с. При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током: .
Энергия магнитного поля, создаваемого током в замкнутом контуре индуктивностью L, равна где I — сила тока в контуре. Энергия магнитного поля катушки с индуктивностью L, создаваемого током I, равна Энергия магнитного поля катушки. Билет 24 24. ВЗАИМНАЯ ИНДУКТИВНОСТЬ, коэффициент взаимной индуктивности – величина, характеризующая отношение потокосцепления одной цепи (катушки) к току другой цепи (катушки), возбуждающему это потокосцепление. В Международной системе единиц (СИ) измеряется в генри (Г). Взаимная индуктивность зависит от числа витков катушек, их размеров и формы, взаимного расположения и магнитной проницаемости среды. Взаимная индуктивность двух катушек связана с их индуктивностью L1 и L2 следующим соотношением:
М = M 1-2 = М 2-1 = К / L 1L 2,
где К – коэффициент связи катушек, характеризующий степень их индуктивной связи; М – взаимная индуктивность, Г. Коэффициент связи зависит от расположения катушек: при большем расстоянии между ними он уменьшается, при меньшем – увеличивается.Пусть две катушки, обладающие сопротивлениями R1 и R2, индуктивностями L1 и L2 и взаимной индуктивностью M, соединены последовательно. Возможны два вида их соединения – согласное и встречное. Если считать, что звездочками отмечены начала обмоток, то при согласном включении начало второй подключается к концу первой. Токи в обеих катушках направлены одинаково относительно одноименных зажимов: от начала к концу. При встречном включении катушек конец второй присоединяется к концу первой. Переменный ток долгое время не находил практического применения. Это было связано с тем, что первые генераторы электрической энергии вырабатывали постоянный ток, который вполне удовлетворял технологическим процессам электрохимии, а двигатели постоянного тока обладают хорошими регулировочными характеристиками. Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения. Переменный ток дал возможность эффективного дробления электрической энергии и изменения величины напряжения с помощью трансформаторов. Появилась возможность производства электроэнергии на крупных электростанциях с последующим экономичным ее распределением потребителям, увеличился радиус электроснабжения. В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися – переменными – токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля. В результате изменения этих полей в цепях возникают явления самоиндукции и взаимной индукции, которые оказывают самое существенное влияние на процессы, протекающие в цепях, усложняя их анализ. Переменным током (напряжением, ЭДС и т.д.)называется ток (напряжение, ЭДС и т.д.), изменяющийся во времени. Токи, значения которых повторяются через равные промежутки времени в одной и той же последовательности, называются периодическими, а наименьший промежуток времени, через который эти повторения наблюдаются, - периодом Т. Для периодического тока имеем
Величина, обратная периоду, есть частота, измеряемая в герцах (Гц):
Диапазон частот, применяемых в технике: от сверхнизких частот (0.01¸10 Гц – в системах автоматического регулирования, в аналоговой вычислительной технике) – до сверхвысоких (3000¸ 300000 МГц – миллиметровые волны: радиолокация, радиоастрономия). В РФ промышленная частота f = 50Гц. Мгновенное значение переменной величины есть функция времени. Ее принято обозначать строчной буквой: i - мгновенное значение тока ; u – мгновенное значение напряжения ; е - мгновенное значение ЭДС ; р - мгновенное значение мощности . Наибольшее мгновенное значение переменной величины за период называется амплитудой (ее принято обозначать заглавной буквой с индексом m). - амплитуда тока; - амплитуда напряжения; - амплитуда ЭДС. Билет 25 Не нашли, что искали? Воспользуйтесь поиском:
|