Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Задачи для самостоятельного решения. 1.1. Вычислите длину окружности, площадь круга и объём шара одного и того же




1.1. Вычислите длину окружности, площадь круга и объём шара одного и того же

заданного радиуса.

1.2. Вычислите периметр и площадь прямоугольного треугольника по длинам двух его

катетов.

1.3. По координатам трёх вершин некоторого треугольника найдите его площадь и

периметр.

1.4. Вычислите дробную часть среднего геометрического трёх заданных вещественных

чисел.

1.5. Определите, является ли заданное целое число А нечётным двузначным числом.

1.6. Определите, имеется ли среди заданных целых чисел A, B, C хотя бы одно чётное.

1.7. Даны три числа. Выберите те из них, которые принадлежат заданному отрезку [ e, f ].

1.8. Определите число, полученное выписыванием в обратном порядке цифр заданного

целого трёхзначного числа.

1.9. Для заданных вещественных чисел a, b и c определите, имеет ли уравнение ax2 + bx +

c = 0 хотя бы одно вещественное решение.

1.10. Вычислите площадь кольца, ширина которого равна Н, а отношение радиуса

большей окружности к радиусу меньшей окружности равно D.

1.11. Определите, есть ли среди цифр заданного целого трёхзначного числа одинаковые.

1.12. Заданы площади круга и квадрата. Определите, поместится ли квадрат в круге.

1.13. Для задачи 1.12 определите, поместится ли круг в квадрате.

1.14. Заданы координаты двух точек. Определите, лежат ли они на одной окружности с

центром в начале координат.

1.15. Определите, лежит ли заданная точка на одной из сторон треугольника, заданного

координатами своих вершин.

1.16. Проверьте, можно ли построить треугольник из отрезков с длинами x, y, z и, если

можно, то какой - остроугольный, прямоугольный или тупоугольный.

1.17. Проверьте, можно ли построить параллелограмм из отрезков с длинами x, y, v, w.

1.18. Даны координаты (как целые от 1 до 8) двух полей шахматной доски. Определите,

может ли конь за один ход перейти с одного из этих полей на другое.

1.19. Треугольник задан величинами своих углов (град.) и радиусом описанной

окружности. Вычислите стороны треугольника.

1.20. Смешали v1 литров воды с температурой t1 градусов Цельсия с v2 литрами воды с

температурой t2 градусов Цельсия. Вычислите объем и температуру образовавшейся

смеси.

1.21. Выберите наибольшее из трех заданных чисел.

1.22. Два прямоугольника заданы длинами сторон. Определите, можно ли первый

прямоугольник целиком разместить во втором.

1.23. Значения заданных переменных a, b и c перераспределите таким образом, что a, b, c

станут, соответственно, наименьшим, средним и наибольшим значениями.

1.24. Решите линейное уравнение ax = b.

1.25. Решите биквадратное уравнение ax4 + bx2 + c = 0.

1.26. Определите номер квадранта, в котором находится точка с заданными координатами

(x, y).

1.27. Запишите заданное смешанное число в виде неправильной дроби.

1.28. Определите, пройдет ли кирпич с рёбрами a, b, c в прямоугольное отверстие со

сторонами x и y. Просовывать кирпич в отверстие разрешается только так, чтобы каждое

из его рёбер было параллельно или перпендикулярно каждой из сторон отверстия.

1.29. Идет k-ая секунда суток. Определите, сколько полных часов и полных минут прошло

к этому моменту от начала суток.

1.30.* Найдите центр и радиус окружности, проходящей через три заданные точки на

плоскости.

1.31.* Даны четыре точки на плоскости. Определите, можно ли построить треугольник с

вершинами в этих точках такой, что оставшаяся точка окажется внутри треугольника.

1.32.* Определите, имеют ли общие точки две плоские фигуры - треугольник с заданными

координатами его вершин и круг радиусом R c центром в начале координат.

1.33. В кубический, наполненный до краев аквариум со стороной а метров выпустили

рыбу-шар диаметром b см. Вычислите, сколько процентов от первоначального объема

воды выплеснется из аквариума (хвост и плавники рыбы не учитывайте).

1.34. Станции А, B и C расположены на n-м, m-м и p-м километрах железной дороги,

соответственно. Какие из этих станций расположены наиболее близко друг к другу?

1.35. На карте координаты начала и конца строящегося прямолинейного участка шоссе

обозначены как (x1, y1) и (x1, y2). Карьер, откуда можно брать гравий для стройки,

имеет координаты (x0, y0), причем x0 <> x1. Определите минимальное расстояние от

строящегося участка шоссе до карьера.

1.36. Составьте программу, играющую со своим автором в "Орел или решку".

1.37.* Любитель горнолыжного спорта собирается провести свой недельный отпуск на

одном из трех курортов. Курорт А открыт с начала ноября по конец апреля, но из-за

лавинной опасности его закрывают на весь январь. Курорт В открыт с начала декабря по

конец марта. Его закрывают на соревнования с 1 по 15 февраля. Курорт С постоянно

открыт с начала октября по конец мая. Стоимость отдыха на каждом из курортов, включая

проезд, составляет, соответственно, P1, P2 и P3 рублей. По дате начала отпуска

определите, сможет ли он провести свой отпуск в горах, и какой минимальной суммой он

должен располагать.

1.38.* Стартовый номер участника соревнований по автомотоспорту определяется на

квалификационных заездах. При этом фиксируется время начала и конца прохождения так

называемого "быстрого" круга (часы, минуты, секунды). Проверьте, корректно ли

зафиксированы данные участника, и найдите время прохождения им "быстрого" круга.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных