ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Некоторые системы счисленияМ И Н И С Т Е Р С Т В О О Б Р А З О В А Н И Я Р О С С И Й С К О Й Ф Е Д Е Р А Ц И И
ЮЖНО-РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА
КАФЕДРА «ИНФОРМАТИКА»
АРИФМЕТИЧЕСКИЕ И ЛОГИЧЕСКИЕ ОСНОВЫ ЭВМ ШАХТЫ 2000
АРИФМЕТИЧЕСКИЕ ОСНОВЫ ПОСТРОЕНИЯ ПК СИСТЕМЫ СЧИСЛЕНИЯ
Система счисления — это способ наименования и изображения чисел с помощью символов, имеющих определенные количественные значения.
Все системы счисления можно разделить на два класса: позиционные и непозиционные. Для записи чисел в различных системах счисления используется некоторое количество отличных друг от друга знаков. Число таких знаков в позиционной системе счисления называется основанием системы счисления. Ниже приведена табл. 1, содержащая наименования некоторых позиционных систем счисления и перечень знаков (цифр), из которых образуются в них числа. Таблица 1
Некоторые системы счисления
В позиционной системе счисления число может быть представлено в виде суммы произведений коэффициентов на степени основания системы счисления: (знак «точка» отделяет целую часть числа от дробной; знак «звездочка» здесь и ниже используется для обозначения операции умножения). Таким образом, значение каждого знака в числе зависит от позиции, которую занимает знак в записи числа. Именно поэтому такие системы счисления называют позиционными. Примеры (индекс внизу указывает основание системы счисления): (в данном примере знак «3» в одном случае означает число единиц, а в другом - число сотых долей единицы); («Шестьсот девяносто два» с формальной точки зрения представляется в виде «шесть умножить на десять в степени два, плюс девять умножить на десять в степени один, плюс два»). Отметим, что кроме рассмотренных выше позиционных систем счисления существуют такие, в которых значение знака не зависит от того места, которое он занимает в числе. Такие системы счисления называются непозиционными. Наиболее известным примером непозиционной системы является римская. В этой системе используется 7 знаков (I, V, X, L, С, D, М), которые соответствуют следующим величинам:
Примеры: III (три), LIX (пятьдесят девять), DLV (пятьсот пятьдесят пять). Недостатком непозиционных систем, из-за которых они представляют лишь исторический интерес, является отсутствие формальных правил записи чисел и, соответственно, арифметических действий над ними (хотя по традиции римскими числами часто пользуются при нумерации глав в книгах, веков в истории и др.).
Не нашли, что искали? Воспользуйтесь поиском:
|