Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Непрерывность функции




 

Пусть функция определена в некоторой окрестности точки .

Определение. Функция называется непрерывной в точке , если она имеет предел в точке и этот предел равен – значению функции в точке :

.

Таким образом, для того чтобы функция была непрерывна в точке , необходимо и достаточно выполнение трех условий:

1) функция должна быть определена в точке ;

2) должны существовать пределы функции при как слева, так и справа, т.е. и ;

3) эти пределы должны быть равны между собой и равны значению функции в точке , т.е. .

Если хотя бы одно из этих условий не выполнено, то говорят, что функция имеет разрыв в точке и точку называют точкой разрыва функции .

Точки разрыва следует искать среди точек, не входящих в область определения функции.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных