Производная сложной функции
Пусть дана сложная функция где или .
Теорема. Если функция дифференцируема в точке , а функция дифференцируема в точке , тогда сложная функция дифференцируема в точке , причем
или
Замечание. Теорема может быть обобщена на случай любой конечной цепочки функций. Так, если , или и существуют производные , то .
Пример
Найти производную функции .
Решение
Здесь ,
, тогда .
Не нашли, что искали? Воспользуйтесь поиском:
|