ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Метод интегрирования подведением под знак дифференциала
Функция называется первообразной для функции на интервале , конечном или бесконечном, если в любой точке этого интервала функция дифференцируема и имеет производную . Совокупность всех первообразных для функции , определенных на интервале , называется неопределенным интегралом от функции на этом интервале и обозначается символом . Метод подведения под знак дифференциала следует из свойства инвариантности неопределенного интеграла. Пусть дан интеграл .Справедливо равенство , где – некоторая непрерывно дифференцируемая функция.
Таблица интегралов
При интегрировании методом подведения под знак дифференциала необходимо иметь в виду следующие равенства:
В общем случае . Пример 1 Найти интеграл . Так как , то .
Пример 2 Найти интеграл . Так как , то .
Пример 3 Найти интеграл . Так как , то Пример 4 Найти интеграл . Так как , то . Не нашли, что искали? Воспользуйтесь поиском:
|