Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






ЛЕКЦИИ ПО ОБЩЕЙ ЭКОЛОГИИ 9 страница




Окислительно-восстановительная функция живого вещества также подчеркивалась В. И. Вернадским. В биосфере постоянно идет окисление более бедных кислородом соединений (в почвах, коре выветривания и в гидросфере): солей, закиси железа и закиси марганца, нитрита, сероводорода, азота и др. Эта функция выполняется, прежде всего, бактериями. Восстановительные процессы резко выражены для сульфатов с образованием сероводорода. В результате возникают пирит и другие сульфиды, образующие часто крупные скопления и залежи в земной коре.

Биогенное перемещение атомов — также одна из функций живого вещества на планете. Кроме вовлечения в химические реакции, вещества перемещаются живыми организмами и в пространстве. Растения выносят химические элементы из почвы на ее поверхность, формируя свои тела порой до десятков метров в высоту. Перемещают большие массы почвы и грунтов роющие животные. На далекие расстояния разносят вещество летающие организмы. Эти процессы, умноженные на время, выявляют грандиозные масштабы происходящего. 102

Одна из важнейших биогеохимических функций на Земле — деструкционная. Она заключается в разложении создаваемой биологической продукции и возвращении биогенных элементов в окружающую среду. В осуществление этого процесса включено огромное разнообразие живых организмов. Многие органические соединения (целлюлоза, лигнин и др.) обладают высокой прочностью и устойчивостью, они не разрушаются в природе в отсутствии редуцентов. На планете постоянно идет гигантская работа по минерализации созданного органического вещества. Параллельно протекает процесс гумификации: часть промежуточных продуктов распада в результате деятельности разных групп организмов вступает в новый синтез, образуя гумус — сложный комплекс веществ, богатых энергией. Гумус является основой почвенного плодородия. Он разлагается определенными микроорганизмами очень медленно и постепенно, обеспечивая постоянство и надежность в снабжении растений биогенными элементами.

Продукты минерализации органических веществ, растворяясь в природных водах, многократно усиливают их химическую активность в разрушении горных пород.

Стабильность биосферы основывается на биогеохимических круговоротах веществ.

Глобальный биогеохимический круговорот вещества представляет собой систему сложно переплетенных циклов химических элементов. Круговороты планетарного масштаба создаются из бесчисленных циклических перемещений атомов, движимых жизнедеятельностью организмов в отдельных экосистемах, и тех перемещений, которые вызываются причинами геологического и ландшафтного характера: поверхностный и подземный сток, ветровая эрозия, вулканизм, горообразование, движение морского дна и т.п. Различают малые и большие круговороты, т.е. локальные и общепланетарные.

Биологические круговороты характеризует неполная замкнутость. Часть химических элементов и их соединений выпадает из общей циркуляции и скапливается вне живых организмов. Так постепенно накапливались кислород и азот атмосферы, горючие ископаемые, осадочные породы. Незамкнутость циклов может быть ничтожной, но помноженная на геологическое время, она приводит к глобальным эффектам, к изменеиям состояния и структуры биосферы. Современная биосфера сильно отличается от биосферы прошедших времен, когда, например, господствовали только микроорганизмы, или когда сложная жизнь была развита только в океане.

Главным для биосферы является цикл органического углерода.

Биологический цикл углерода определяется первичной продукцией организмов за счет фотосинтеза растений и цианобактерий, частично — хемосинтезирующих бактерий и 103

последующей деструкцией созданного органического вещества всеми, как аэробными, так и анаэробными организмами. Конечный продукт деструкции — углекислый газ, связывающий цикл органического углерода с неорганическим и с циклом кислорода. Основные запасы углерода находятся в связанном виде в осадочных породах Земли (в основном в составе карбонатов), значительная часть растворена в водах океана, и относительно небольшая часть присутствует в составе воздуха. Общие пропорции углерода в литосфере, гидросфере и атмосфере, по уточненным расчетам, 28570: 57: 1.

Таким образом, в биологическом круговороте участвуют лишь доли процента от общего его количества на Земле. Атмосфера и гидросфера представляют обменный фонд, откуда его черпают зеленые растения. Выделение углерода из недр Земли в составе вулканических газов примерно равно скорости погружения его вглубь литосферы в составе осадочных пород, т.е. большой геологический цикл углерода уравновешен. Из биологических круговоротов на суше и в океане часть углерода надолго выводится из-за недостаточной скорости деструкционных процессов. Так образуются залежи горючих ископаемых, обогащение органическим углеродом осадочных пород и смыкание большого и малого круговоротов. Временным резервуаром углерода являются тела долгоживущих организмов и запасы мертвой органики (мортмассы), еще не успевшей разложиться, и почвенного гумуса. В растительном покрове суши связано 4,5 × 1011 т С, в почве — 7 × 1011 т. Экосистемы могут оказаться накопителями органического углерода даже при низкой продуктивности, все определяет отставание скорости разложения от скорости создания органического вещества. К таким экосистемам относятся, например, болота, моховые тундры, таежные леса с большим запасом подстилки.

Суммарная биомасса организмов зависит от количества углерода, участвующего в системе биологического круговорота. Известную регуляторную роль играет растительность, которая способна до некоторых пределов поглощать избыток углекислого газа воздуха и резервировать углерод в своих телах, увеличивая продуктивность и биомассу. Углекислый газ относится к парниковым, и даже небольшое увеличение его содержания в воздухе может заметно повлиять на средние температуры и климат Земли. Поэтому уменьшение суммарной массы растительности, особенно лесной, при современных масштабах антропогенного уничтожения лесов, грозит подрывом тонкого равновесия в цикле органического углерода, связанного и с циклами многих других веществ в биосфере. 104

Кислород. Находится в основном в составе воды и минералов. Это самый распространенный химический элемент на Земле. Свободный молекулярный кислород накапливается в биосфере как побочный продукт фотосинтеза и используется на дыхание организмов и окисление всех недоокисленных веществ на поверхности Земли. Растворимость кислорода в воде невелика, его концентрация, при полном насыщении, в среднем в 21 раз ниже, чем в воздухе. Резерва, имеющегося в воздушной среде, при прекращении фотосинтеза хватило бы не более чем на 2000 лет. Накопление О2 в атмосфере и гидросфере происходит в результате неполной замкнутости цикла углерода. Захоронение органики в осадочных породах, углях, торфах послужило основой поддержания обменного фонда О2 в атмосфере. Современное человечество усиленно «работает» на уменьшение запасов свободного кислорода в биосфере. Этому способствует сведение лесов и беспрецедентное связывание О2 за счет сжигания топлива промышленностью и транспортом. Оно достигло уже почти 14 млрд. т в год, что составляет почти тридцатую часть поставляемого растительностью кислорода, т.е. вполне сопоставимо по масштабам с биосферными процессами.

Азот. Входит в состав важнейших органических молекул — ДНК, белков, липопротеидов, АТФ, хлорофилла и др. Его общее отношение к углероду в биомассе составляет 16:106. Недостаток азота часто является фактором, лимитирующим биологическую продукцию. Молекулярный азот атмосферы недоступен растениям. Ассимиляция ими азота возможна только из его связанных форм — аммиака, нитратов, мочевины. Биологический круговорот азота поэтому целиком поддерживается деятельностью бактерий. Многие из них обладают способностью к фиксации атмосферного азота. Этот процесс требует больших затрат энергии на разрыв прочных связей между двумя атомами азота. Аммонифицирующие бактерии, разлагая органическое вещество, переводят азот в аммиачную форму, а продолжающие этот процесс нитрификаторы окисляют его до нитритов и нитратов. Денитрифицирующие бактерии завершают цикл, освобождая азот из нитратов и переводя вновь в молекулярную форму. Растения, усваивая азот на потоке его превращений бактериями, не могли бы существовать без бактериальной системы этого круговорота.

Независимый от жизнедеятельности бактерий механизм вовлечения молекулярного азота в биологические циклы — разряды молний, способствующие возникновению аммиака и нитрата. Однако, эти процессы не восполняют потерь при денитрификации. Современная промышленность удобрений фиксирует азот атмосферы в количествах, 105

превышающих природную азотфиксацию. Избытки нитратов, поступающих через загрязнение вод и продуктов питания к человеку, угрожают его здоровью. Деятельность человека все сильнее влияет на круговорот азота в природе.

Фосфор. Входит в состав нуклеиновых кислот, энергетических молекул АТФ и АДФ, фосфолипидов клеточных мембран, скелетных тканей животных. Его среднее отношение к органическому углероду в биомассе составляет 1: 106. Специфика круговорота фосфора связана с тем, что он не образует летучих соединений и плохо растворим в воде. Источником доступного растениям фосфора является в основном его выщелачивание из подстилающих почвы горных пород. На суше из разлагающейся органики соединения фосфора возвращаются в почву, но частично вымываются в водоемы и, в конечном счете, в океан. В воде они почти не остаются в растворенном виде, а захораниваются в осадках, переходя в систему геологического круговорота. Дефицит фосфора в центрах океанов — один из главных лимитирующих факторов продуктивности водорослей в фотическом слое. Но и у берегов континентов в морских экосистемах жизнь рассчитана на невысокие концентрации фосфора. В биосфере, по сути дела, осуществляется однонаправленный поток фосфора из горных пород суши в глубины океана, и обменный фонд его в гидросфере очень ограничен. Промышленное производство фосфорных удобрений усиливает поступление этого элемента, через смыв с полей, в пресные водоемы и является одной из главных причин их бурной эвтрофикации, а также грозит нарушением природного равновесия в морях.

Все биогеохимические циклы элементов связаны друг с другом в общую систему, поскольку атомы, имеющие разную «судьбу» в атмосфере, гидросфере и литосфере, вступают друг с другом в реакции, объединяясь в разных пропорциях в составе органических молекул.

Все химические элементы, используемые в процессах жизнедеятельности организмов, совершают постоянные перемещения, переходя из живых тел в соединения неживой природы и обратно. Возможность многократного использования одних и тех же атомов делает жизнь на Земле практически вечной при условии постоянного притока нужного количества энергии. Однако формы жизни меняются и влияют на геологическую историю.

Историю Земли делят на три большие отрезка — архей (первые два миллиарда лет ее существования), протерозой (следующие два миллиарда лет) и фанерозой, который начался около 570 млн. лет назад. В архее господствовали бактериальные формы жизни 106

при отсутствии озонового экрана над Землей. Образующийся в результате фотосинтеза цианобактерий кислород шел на окисление восстановленных и недоокисленных соединений в атмосфере и гидросфере. В протерозое началось накопление свободного кислорода, приведшее к расцвету аэробных эукариотических одноклеточных организмов (простейших и водорослей), а к концу протерозоя — и многоклеточных форм. Фанерозой начался со взрывного образования многоклеточных скелетных животных, в возникновении которых большую роль сыграло дальнейшее увеличение концентрации кислорода в атмосфере и воде. Формирование в результате этого полноценного озонового экрана сделало возможным выход сложных форм жизни на сушу, возникновение растительного покрова, уменьшение сноса в океан продуктов эрозии. Почти 370 млн. лет на суше шумят леса, но сначала они состояли из споровых растений, а затем сменились голосеменными и покрытосеменными. Почвы из примитивных сначала пленочных сменились, под первыми лесами, полуводными образованиями, в анаэробных условиях которых шло захоронение древесины с последующим превращением в каменные угли. В современных почвах, имеющих развитый профиль, господствуют аэробные процессы разложения органики, идут активные процессы минерализации и образуются резервы гумуса. Жизнь на Земле, с одной стороны, вечна, а с другой — изменяема.

Процессы изменения биосферы многократно усилились с возникновением и развитием человеческого общества. Они идут по нарастающей, быстро ускоряющимися темпами. Угрожающе увеличивается риск сбоев в природной саморегуляции устойчивости биосферы. Перед современным человечеством встает вопрос о саморегуляции в меняющемся мире, поскольку масштабы его отрицательного влияния на окружающую среду сравнимы с биосферными процессами. В связи с этим в центр внимания выдвигается идея «устойчивого развития», провозглашенная в 1992 г. на Международном форуме в Рио-де-Жанейро. Мировому сообществу приходится решать задачи, по масштабам не имеющие себе равных в истории человеческого общества. Становится понятным, что человечество может продолжать развиваться на планете только при условии принятия в расчет экологических ограничений, на которых основывается стабильность всей биосферы. Международные рекомендации всем государствам — развитие экологической политики, в основу которой должны быть положены:

1. содействие восстановлению ресурсов, предельно экономному использованию из них невозобновимых и переход на технологии. потребления в основном возобновимых со строгим соблюдением норм их изъятия; 2. жесткие нормы предельного загрязнения среды 107

с развитием новых технологий, способствующих снижению этого загрязнения; 3. охрану редких экосистем и видов, сохранение биологического разнообразия планеты, с достаточной мерой ответственности за нарушения.

В целом вопрос стоит о том, как вписать экономическое развитие общества в экологические ограничения биосферы. Отсюда вырастает роль развития экологической науки и экологического образования. Не нарушать природное равновесие в такой грандиозной по сложности природной системе как биосфера можно только хорошо зная закономерности ее функционирования. Надо уметь определять емкость среды, устанавливать формы и пределы допустимого воздействия, чего нельзя сделать без опоры на фундамент знаний, собираемых кропотливым трудом ученых.

Естественно, что необходимым условием устойчивого развития общества является достаточно высокая экологическая культура населения. Еще в 1977 г. на Международной конференции в Тбилиси было признано необходимым и приоритетным экологическое и природоохранное просвещение всех социальных и возрастных групп населения, т.е. «непрерывное экологическое образование».

Решение экологических проблем связано, прежде всего, с осознанием всем населением планеты масштабов надвигающейся экологической катастрофы, важности обеспечения экологической безопасности, охраны природы и изменения всего стиля хозяйствования человечества на Земле. В.И. Вернадский оптимистично отмечал приближение «ноосферы» — времени, когда биосферные процессы будут регулироваться разумом человека. Глобальное влияние человека на биосферу уже наглядно проявляется, и в основном отрицательно, но до разумной регуляции мощных природных сил пока еще далеко, хотя человечество уже знает, в каком направлении надо действовать. Очевидно, что это требует гигантских объединенных усилий науки, экономики, политики и просвещения.

Вопросы к лекции 8.

1. Что такое биосфера? В чем основная суть идеи биосферы В. И. Вернадского?

2. Как сформировался газовый состав современной атмосферы?

3. Какие изменения произвела жизнь на планете за время ее существования?

4. В чем заключаются главные механизмы устойчивости жизни на Земле?

5. Почему для человечества главным становится вопрос своего «устойчивого развития»?






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных