ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Кожне натуральне число розкладається на прості множники єдиним чином.Теорема. (Основна теорема арифметики). Будь-яке натуральне число, крім одиниці, може бути єдиним способом подане у вигляді добутку простих чисел (якщо не враховувати порядок розміщення множників). Нехай складене число а розкладено в добуток простих чисел, серед яких можуть бути й рівні між собою. Записуючи добуток однакових множників у вигляді степеня, дістаємо де — різні прості дільники числа а; — деякі цілі додатні числа, що дорівнюють кількості повторів простих дільників у розкладі числа а. Наведену рівність називають канонічним розкладом натурального числа а на прості множники. Розкладаючи натуральні числа на прості множники, використовують ознаки подільності. Множники звичайно записують у порядку їх зростання праворуч від вертикальної риски. Наведемо приклади таких розладів: 5.× 32 × 7, 360 = 23 × 5 × 3 × 19, 2 10 = 2 × 5 ×Таким чином, 190 = 2 Методика Задачі на знаходження невідомого компонента арифметичної дії. Вперше із задачами на знаходження невідомого компонента учні ознайомлюються в 1 класі. Першими розглядають задачі на знаходження невідомого доданка. Зміст задачі здебільшого подають за допомогою малюнка, що наближає методику роботи над задачею до розгляду вправи на склад числа. Задачі на знаходження невідомого доданка, зменшуваного і від'ємника розв'язують на основі конкретного змісту дій додавання і віднімання. У З класі ці задачі, а також задачі на знаходження невідомого множника, діленого і дільника розв'язують як арифметичним способом, так і складанням рівняння. Розв'язування задач арифметичним способом має велике значення для закріплення знань учнів про зв'язки між компонентами і результатом дій, дає їм змогу відчути "зворотний" хід розв'язування. Надалі діти розв'язуватимуть арифметичним способом складені задачі, що містять прості задачі на знаходження невідомого компонента дії. Ознайомленню з кожною задачею на знаходження невідомого компонента дій першого ступеня передує виконання відповідних операцій над предметними множинами. Задача. У коробці було 5 зелених і кілька червоних кружечків. Всього 8кружечків. Скільки червоних кружечків було в коробці? На дошці запис: Покладемо в коробку червоні й зелені кружечки. Скільки всього кружечків у коробці? (8). Скільки зелених кружечків у коробці? (5). Візьмемо з коробки зелені кружечки. Які кружечки залишилися в коробці? (Червоні). Було 8 кружечків, 5 кружечків взяли, отже, червоних кружечків залишилось 8 без 5. Як дізнатися, скільки червоних кружечків було? (Треба від числа 8 відняти 5). Запишемо і виконаємо дію: 8 — 5 = 3 (к.). Відповідь. З червоних кружечки. Не нашли, что искали? Воспользуйтесь поиском:
|