ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Основные свойства определителей. Сформулируем и докажем основные свойства определителей 2-го и 3-го порядка (доказательство проведем для определителей 3-го порядка).Сформулируем и докажем основные свойства определителей 2-го и 3-го порядка (доказательство проведем для определителей 3-го порядка).
Свойство 1. Определитель не изменяется при транспонировании, т.е.
Доказательство.
= Замечание. Следующие свойства определителей будут формулироваться только для строк. При этом из свойства 1 следует, что теми же свойствами будут обладать и столбцы.
Свойство 2. При умножении элементов строки определителя на некоторое число весь определитель умножается на это число, т.е. .
Доказательство.
Свойство 3. Определитель, имеющий нулевую строку, равен 0. Доказательство этого свойства следует из свойства 2 при k = 0.
Свойство 4. Определитель, имеющий две равные строки, равен 0.
Доказательство. Свойство 5. Определитель, две строки которого пропорциональны, равен 0. Доказательство следует из свойств 2 и 4.
Свойство 6. При перестановке двух строк определителя он умножается на –1.
Доказательство.
Свойство 7.
Доказательство этого свойства можно провести самостоятельно, сравнив значения левой и правой частей равенства, найденные с помощью определения 1.5.
Свойство 8. Величина определителя не изменится, если к элементам одной строки прибавить соответствующие элементы другой строки, умноженные на одно и то же число.
Доказательство следует из свойств 7 и 5.
Билет 3.
Обратная матрица.
Ответ: Определение 3.7. Квадратная матрица А называется вырожденной, если , и невырожденной, если .
Определение 3.8. Квадратная матрица В называется обратной к квадратной матрице А того же порядка, если АВ = ВА = Е. При этом В обозначается . Рассмотрим условие существования матрицы, обратной к данной, и способ ее вычисления.
Теорема 3.2. Для существования обратной матрицы необходимо и достаточно, чтобы исходная матрица была невырожденной.
Доказательство. 1) Необходимость: так как то (теорема 3.1), поэтому 2) Достаточность: зададим матрицу в следующем виде: . Тогда любой элемент произведения (или ), не лежащий на главной диагонали, равен сумме произведений элементов одной строки (или столбца) матрицы А на алгебраические дополнения к элементам друго столбца и, следовательно, равен 0 (как определитель с двумя равными столбцами). Элементы, стоящие на главной диагонали, равны Таким образом, = . Теорема доказана.
Замечание. Сформулируем еще раз способ вычисления обратной матрицы: ее элементами являются алгебраические дополнения к элементам транспонированной матрицы А, деленные на ее определитель. Пример. Найдем матрицу, обратную к следовательно, матрица А невырожденная. Найдем алгебраические дополнения к ее элементам: Не забудем, что алгебраические дополнения к элементам строки матрицы А образуют в обратной матрице столбец с тем же номером. Итак, Можно убедиться, что найденная матрица действительно удовлетворяет определению Найдем Тот же результат получим и при перемножении в обратном порядке.
Билет 4. Ответ: Линейным уравнением называется уравнение вида (2.1) где и b – числа, - неизвестные. Таким образом, в левой части линейного уравнения стоит линейная комбинация неизвестных, а в правой – число. Системой линейных уравнений (линейной системой) называется система вида (2.2) где , - числа, - неизвестные, n – число неизвестных, m – число уравнений.
Решением линейной системы называется набор чисел которые при подстановке вместо неизвестных обращают каждое уравнение системы в верное равенство.
Не нашли, что искали? Воспользуйтесь поиском:
|