Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Решение линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами в зависимости от вида правой части.




Рассмотрим линейное дифференциальное уравнение вида

где p, q − постоянные коэффициенты.
Для каждого такого дифференциального уравнения можно записать так называемое характеристическое уравнение:

Обшее решение однородного дифференциального уравнения зависит от корней характеристического уравнения, которое в данном случае будет являться квадратным уравнением. Возможны следующие случаи:

1. Дискриминант характеристического квадратного уравнения положителен: D > 0. Тогда корни характеристического уравнения k 1 и k 2 действительны и различны. В этом случае общее решение описывается функцией

где C 1 и C 2 − произвольные действительные числа.

2. Дискриминант характеристического квадратного уравнения равен нулю: D = 0. Тогда корни действительны и равны. В этом случае говорят, что существует один корень k 1 второго порядка. Общее решение однородного дифференциального уравнения имеет вид:

3. Дискриминант характеристического квадратного уравнения отрицателен: D < 0. Такое уравнение имеет комплексно-сопряженные корни k 1 = α + βi, k 1 = α − βi. Общее решение записывается в виде

Рассмотренные три случая удобно представить в виде таблицы:






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных