ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Аналитический способ сложения сил
Проекция равнодействующей сходящейся системы сил на какую-либо ось равна алгебраической сумме проекций слагаемых векторов на ту же ось.
Пусть на тело действует система сил (F 1,…, F 4), при этом линии действия сил расположены в плоскости OXY (рис. 1.30).
Их равнодействующая R = F 1 + … + F 4. Спроецируем составляющие векторы и их равнодействующую на ось OX. Очевидно F1OX > 0, F2OX > 0, F3OX > 0, F4OX < 0, ROX > 0. Из рис. 1.30 видно, что ROX = F1OX + F2OX + F3OX + F4OX. Для любой сходящейся системы сил (F 1,…, F n), обозначая их равнодействующую через R, получим: ROX = Σ FiOX; ROY = Σ FiOY; ROZ = Σ FiOZ. Зная проекции ROX, ROY, ROZ равнодействующей R на координатные оси, можно найти её модуль и направляющие косинусы. = ; cos(R, i) = ROX/R; cos(R, j) = ROY/R; cos(R, k) = ROZ/R.
Для плоской сходящейся системы сил последние выражения приобретают вид: ROX = Σ FiОX; ROY = Σ FiОY; = ; cos(R, i) = ROX/R; cos(R, j) = ROY/R. Известно, что сходящаяся система сил уравновешивается только в том случае, если их равнодействующая равна нулю. Графически плоская сходящаяся система сил изображается замкнутым силовым многоугольником (рис. 1.31). В общем случае R = Σ F i = 0. В замкнутом силовом многоугольнике все силы направлены в одну сторону по обходу многоугольника. Частный случай. Три сходящиеся силы уравновешиваются, если треугольник этих сил замкнут.
Геометрическое условие равновесия сходящейся системы сил, расположенных в пространстве и на плоскости, одно и то же. Однако графический метод решения задач на равновесие сходящейся системы сил практически применяется только для плоской системы сходящихся сил. Не нашли, что искали? Воспользуйтесь поиском:
|