Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Алгебраический момент силы




Относительно точки

 

 

На рис. 1.39 изображены сила F и точки А и В, расположенные в плоскости OYZ.

 

 
 

Под действием силы F, приложенной в точке В, тело будет совершать вращательное движение относительно оси АХ1, проходящей через точку А перпендикулярно плоскости рисунка.

В случае, когда рассматривается плоская система сил, векторным выражением момента силы F относительно точки А (M A(F) = r ´ F) пользоваться неудобно.

Вращательный эффект силы характеризуется алгебраическим моментом MA(F) силы F относительно точки А. MA(F) = ± F×h, где h – плечо силы F относительно точки А.

 

Плечо силы относительно точкикратчайшее расстояние от точки до линии действия силы.

 

Если под действием силы F тело вращается против хода часовой стрелки, то MA(F) = F×h > 0. Если под действием силы вращение тела происходит по ходу часовой стрелки, то момент этой силы относительно точки отрицателен (MA(F) = F×h < 0).

В общем случае справедлива формула

MA(F) = ± F×h.

На рис 1.40 изображены силы F, P, Q и точка А, расположенные в одной плоскости OXY.

 
 

Алгебраические моменты этих сил относительно точки А выражаются формулами:

MA(F) = F×h > 0;

MA(P) = – Р×h1 < 0;

MA(Q) = Q·0 = 0.

 

Таким образом, алгебраическим моментом силы относительно точки называют взятое с соответствующим знаком произведение модуля силы на её плечо относительно точки.

 

Момент силы относительно точки не изменится, если силу переместить вдоль линии её действия.

Момент силы относительно точки равен нулю, если линия действия силы проходит через эту точку.

 

 

Вопросы и задания для самоконтроля

 

 

1. Сформулировать определение термина «пара сил».

2. Сформулировать определение термина «плоскость действия пары сил».

3. Сформулировать определение термина «плечо пары сил».

4. Сформулировать определение термина «алгебраический момент пары сил».

5. Сформулировать определение термина «момент пары сил».

6. Сформулировать теорему об эквивалентности пар сил, лежащих в одной плоскости.

7. Сформулировать первое следствие из теоремы об эквивалентности пар сил, лежащих в одной плоскости.

8. Сформулировать второе следствие из теоремы об эквивалентности пар сил, лежащих в одной плоскости.

9. Сформулировать теорему о равновесии пар сил, приложенных к телу.

10. Сформулировать определение термина «плечо силы относительно точки».

11. Записать формулу для определения алгебраического момента силы F относительно точки А.

 

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных