Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Евклидово пространство.




Определение: Линейное пространство называется евклидовым, если в нем введена операция скалярного произведения, которая ставит в соответствие любым векторам х и у Є L число x•y, удовлетворяющее следующим свойствам:

x•y=y•x;

(lx)• y= l(x•y);

x•(y + z)= x•y + x•z;

x • x ³ 0,причем скалярный квадрат x•x= 0 ↔ х= 0.

В Евклидовых пространствах можно ввести понятие длины вектора (модуль вектора) и угол между векторами .

Нужно показать, что ï cos j ï£ 1.

Для этого докажем неравенство Коши - Буняковского (Шварца):

0£│a • b│£│a│·│b│.

Док-во: Рассмотрим скалярный квадрат

(a- lb)•(a- lb)= a • a- la • b- l a • b + l2b • b= │a│2- 2la • b+ l2│b│2³ 0, как скалярный квадрат.

Последнее неравенство рассмотрим как квадратное относительно l.

l2│b│2- 2λa•b +│a│2³ 0.

Чтобы это неравенство выполнялось при любом λ, нужно, чтобы дискриминант D£ 0.

D= b2- 4ac= (-2a•b)2- 4│b│2·│a│2£ 0.

4(a•b) 2- 4│b│2·│a│2£ 0 ê: 4;

(a•b) 2£ │b│2·│a│2.

Извлекаем корень :

0£│a • b│£│a│·│b│.

Ч.т.д.

 

На основании неравенства Коши - Буняковского определение косинуса угла между векторами Евклидова пространства корректно.

Замечание: Евклидово пространства размерности n принято обозначать En,

E2 - евклидово пространство всех векторов на плоскости, E3 - в пространстве.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных