ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Логическая схема дисперсионного анализа. Однофакторный дисперсионный комплексВведение Аналитические группировки при всей своей значимости не дают количественного выражения тесноты связи между признаками. Эта задача решается с помощью дисперсионного и корреляционного анализа. Дисперсионный анализ – статистический метод, позволяющий оценить влияние одного или нескольких факторов на результатирующий признак. Дисперсионный анализ дает прежде всего возможность определить значение систематической и случайной вариаций в общей вариации, а также установить роль интересующего нас фактора в изменении результативного признака. Наиболее простой, часто встречающейся на практике является ситуация, когда можно указать один фактор, влияющий на конечный результат, и этот фактор принимает конечное число значений. Следует определить, существенно ли это влияние. Такая ситуация может быть проанализирована при помощи однофакторного дисперсионного анализа. Сущность применяемой методики в следующем: проводится комбинированная группировка по результатирующему и факторному признакам. Она обеспечивает разложение общей дисперсии на межгрупповую (факторную) и остаточную. Межгрупповая дисперсия отражает вариацию признака, которая возникает под воздействием признака-фактора, положенного в основу группировки. Остаточная дисперсия характеризует случайную вариацию в каждой отдельной группе. Эта вариация возникает под влиянием других факторов и не зависит от факторного признака, положенного в основу группировки. Общая дисперсия характеризует вариацию признака, обусловленную влиянием всех факторов. Для оценки существенности различий между группами по величине какого-либо признака рекомендуется использовать критерий Фишера (F), фактическое значение которого определяется как отношение межфакторной дисперсии к остаточной по формуле: Где: – межгрупповая дисперсия; -остаточная дисперсия. Фактическое значение критерия Фишера сравнивают с табличным, которое определяется при заданном уровне значимости и числе степеней свободы для межгрупповой и остаточной дисперсии: Если , утверждают о значительном различии между группами то есть влияние факторного (группировочного) признака на результативный существенно. Если влияние факторного признака существенно, то следует определить корреляционное отношение, как отношение межгрупповой (факторной) дисперсии к общей Аналитические группировки при всей своей значимости не дают количественного выражения тесноты связи между признаками. Эта задача решается с помощью дисперсионного и корреляционного анализа. Дисперсионный анализ – статистический метод, позволяющий оценить влияние одного или нескольких факторов на результатирующий признак. Дисперсионный анализ дает прежде всего возможность определить значение систематической и случайной вариаций в общей вариации, а также установить роль интересующего нас фактора в изменении результативного признака. Наиболее простой, часто встречающейся на практике является ситуация, когда можно указать один фактор, влияющий на конечный результат, и этот фактор принимает конечное число значений. Следует определить, существенно ли это влияние. Такая ситуация может быть проанализирована при помощи однофакторного дисперсионного анализа. Сущность применяемой методики в следующем: проводится комбинированная группировка по результатирующему и факторному признакам. Она обеспечивает разложение общей дисперсии на межгрупповую (факторную) и остаточную. Межгрупповая дисперсия отражает вариацию признака, которая возникает под воздействием признака-фактора, положенного в основу группировки. Остаточная дисперсия характеризует случайную вариацию в каждой отдельной группе. Эта вариация возникает под влиянием других факторов и не зависит от факторного признака, положенного в основу группировки. Общая дисперсия характеризует вариацию признака, обусловленную влиянием всех факторов. Для оценки существенности различий между группами по величине какого-либо признака рекомендуется использовать критерий Фишера (F), фактическое значение которого определяется как отношение межфакторной дисперсии к остаточной по формуле: Где: – межгрупповая дисперсия; -остаточная дисперсия. Фактическое значение критерия Фишера сравнивают с табличным, которое определяется при заданном уровне значимости и числе степеней свободы для межгрупповой и остаточной дисперсии: Если , утверждают о значительном различии между группами то есть влияние факторного (группировочного) признака на результативный существенно. Если влияние факторного признака существенно, то следует определить корреляционное отношение, как отношение межгрупповой (факторной) дисперсии к общей. Корреляционное отношение по своему абсолютному значению колеблется в пределах от 0 до 1. Чем ближе корреляционное отношение к 1, тем больше влияние оказывает факторный признак на результативный. Для изучения взаимосвязи между производительностью труда и заработной платой проведем дисперсионный анализ на основе результатов проведенной аналитической группировки (смотри таблицу 1) Средний уровень производительности труда по 30 предприятиям составляет 247,43 тыс. рублей (7423 / 30 = 247,43) Вычислим общую дисперсию, характеризующую общую вариацию под влиянием всех факторов (приложение 1): Межгрупповая дисперсия, характеризующая различия в уровне заработной платы, обусловленные неодинаковой производительностью труда: Рассчитаем корреляционное отношение: 0,924 Следовательно, 92,4% всей вариации заработной платы объясняется различиями в уровне производительности труда. Результат действия других факторов на уровень заработной платы составляет всего 7,6% Остаточная дисперсия: Критерий Фишера: Табличное значение: 4,2 Фактическое значение критерия в несколько раз превышает табличное, значит, влияние производительности труда на уровень заработной платы является очень существенным. Подобный дисперсионный анализ может проводиться при группировке по одному факторному признаку или при комбинационной группировке по двум и более факторам. Сам принцип дисперсионного анализа, основанный на сопоставлении факторной дисперсии со случайной для оценки достоверности результатов статистической группировки, остается применим независимо от числа признаков группировки. Логическая схема дисперсионного анализа. Однофакторный дисперсионный комплекс Дисперсионный анализ, основы которого были разработаны Фишером в 1920-1930 гг., позволяет устанавливать не только степень одновременного влияния на признак нескольких факторов и каждого в отдельности, но также их суммарное влияние в любых комбинациях и дополнительный эффект от сочетания разных факторов. Разумеется, и в этом случае остается масса неучтенных факторов, но, во-первых, методика позволяет оценить долю их влияния на общую изменчивость признака, а во-вторых, исследователь обычно имеет возможность выделить несколько ведущих факторов и исследовать именно их воздействие на изменчивость признаков. Дисперсионный анализ позволяет решить множество задач, когда требуется изучить воздействие природных или искусственно создаваемых факторов на интересующий исследователя признак. Дисперсионный анализ принадлежит к числу довольно трудоемких биометрических методов, однако правильная организация опыта или сбора данных в природных условиях существенно облегчает вычисления. В зависимости от числа учитываемых факторов дисперсионный анализ может быть одно-, двух, трех- и многофакторным. Объем работы с увеличением числа факторов резко возрастает, поэтому уже четырехфакторный анализ следует проводить с помощью ЭВМ. Идея дисперсионного анализа заключается в разложении общей дисперсии случайной величины на независимые случайные слагаемые, каждое из которых характеризует влияние того или иного фактора или их взаимодействия. Последующее сравнение этих дисперсий позволяет оценить существенность влияния фактора на исследуемую величину. Таким образом, задача дисперсионного анализа состоит в том, чтобы выявить ту часть общей изменчивости признака, которая обусловлена воздействием учитываемых факторов, и оценить достоверность делаемого вывода. Пусть, например, А – исследуемая величина, – среднее значение величины А, учитываемые факторы мы обозначим буквой х, неучитываемые – z, а все факторы вместе – буквой у (или припиской этих букв к соответствующим символам). Неучитываемые факторы составляют «шум» – помехи, мешающие выделить степень влияния учитываемых факторов. Отклонение А от при действии факторов х и z можно представить в виде суммы (А– )=У=Х+Z, (1.1) где Х – отклонение, вызываемое фактором х, Z – отклонение, вызываемое фактором z, У – отклонение, вызываемое всеми факторами. Кроме того, предположим, что Х,У,Z – являются независимыми случайными величинами, обозначим дисперсии через s2Х, s2У, s2Z, s2А. Тогда имеет место равенство s2А=s2Х+s2Z. (1.2) Сравнивая дисперсии, можно установить степень влияния факторов х и z на величину А, т.е. степень влияния учтенных и неучтенных факторов. Непременным условием дисперсионного анализа является разбивка каждого учитываемого фактора не менее чем на две качественные или количественные градации. Если исследуется влияние одного фактора на изучаемую величину, то речь идет об однофакторном комплексе, если изучается влияние двух факторов, то о двухфакторном комплексе и т.д. Для проведения дисперсионного анализа обязательным условием является нормальное распределение и равные дисперсии совокупности случайных величин. Для пояснения логической схемы дисперсионного анализа рассмотрим простейший произвольный пример. Предположим, что совокупности возрастающих доз удобрения на разных делянках имеют нормальное распределение и равные дисперсии. Имеется m таких совокупностей (разные делянки), из которых произведены выборки объемом n1,n2,…,nm. Обозначим выборку из i -й совокупности через (хi1,хi2,…хin) – урожайность делянок. Тогда все выборки можно записать в виде табл. 1, которая называется матрицей наблюдений. Таблица 1 Не нашли, что искали? Воспользуйтесь поиском:
|