Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Проблема самоприменимости




Нумерация МТ

A={a0,..,ai,…} – внешний алфавит МТ (счетное множество).

Q={q0, q1, …, qj,…} – внутренние состояния МТ (счетное множество).

Пусть для всех МТ a0 – пустой символ, q0 – заключительное состояние, q1 – начальное состояние.

Каждому символу из множества {Л, П, С, a0, a1,…, ai,…, q0, q1, …qj… } поставим в соответствие двоичное число:

  Символ Код Число нулей в коде
Д Л    
П    
С    
А а0    
а1    
   
ai 10………0 2i+4
….    
Q q0    
q1    
….    
qj 10………0 2j+5
   

Команде МТ поставим в соответствие двоичное число:

.

Упорядочим команды МТ в соответствии с лексикографическим порядком левых частей команд q1a0, q1a1,…q2a0,…. и т. д. Получим последовательность команд I1,…In(m+1), где n – число символов в алфавите А, m – число состояний в множестве Q.

Тогда МТ можно поставить в соответствие двоичное число вида:

Код(Т)=Код(I1)Код(I2) …..Код(In(m+1)).

Пример.

A={a0,a1}

Q={q0,q1}

I1:q1a0→q0a0C

I2:q1a1→q0a1C

Тогда Код(Т)=

Такое кодирование является алгоритмической процедурой. Зная код МТ можно однозначно восстановить множество ее команд. Код МТ можно рассматривать как двоичную запись натурального числа. Такое число называется номером МТ.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных