ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Действие магнитного поля на движущийся зарядОпыт показывает, что магнитное поле действует не только на проводники с током, но и на отдельные заряды, движущиеся в магнитном поле. Сила, действующая на электрический заряд Q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и выражается формулой F =Q[ vB ], (1) где В – индукция магнитного поля, в котором движется заряд. Направление силы Лоренца определяется с помощью правила левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца направить вдоль вектора v, то отогнутый большой палец покажет направление силы, действующей на положительный заряд. На отрицательный заряд сила действует в противоположном направлении. Модуль силы Лоренца равен , где a – угол между v и В. Магнитное поле не действует на покоящийся электрический заряд. В этом существенное отличие магнитного поля от электрического. Магнитное поле действует только на движущиеся в нем заряды. Сила Лоренца всегда перпендикулярна скорости движения заряженной частицы, поэтому она изменяет только направление этой скорости, не изменяя ее модуля. Следовательно, сила Лоренца работы не совершает. Значит, постоянное магнитное поле не совершает работы над движущейся в нем заряженной частицей и кинетическая энергия этой частицы при движении в магнитном поле не изменяется. Если на движущийся электрический заряд помимо магнитного поля с индукцией В действует и электрическое поле с напряженностью Е, то результирующая сила F, приложенная к заряду, равна векторной сумме сил – силы, действующей со стороны электрического поля, и силы Лоренца: . Это выражение называется формулой Лоренца. Скорость v в этой формуле есть скорость заряда относительно магнитного поля.
Движение заряженных частиц в магнитном поле Выражение для силы Лоренца позволяет найти ряд закономерностей движения заряженных частиц в магнитном поле. Направление силы Лоренца и направление вызываемого ею отклонения заряженной частицы в магнитном поле зависят от знака заряда Q частицы. На этом основано определение знака заряда частиц, движущихся в магнитных полях. Будем считать, что магнитное поле однородно, и на частицы электрические поля не действуют. Если заряженная частица движется в магнитном поле со скоростью v вдоль линий магнитной индукции, то угол а между векторами v и В равен 0 или p. Тогда сила Лоренца равна нулю, т. е. магнитное поле на частицу не действует и она движется равномерно и прямолинейно. Если заряженная частица движется в магнитном поле со скоростью v, перпендикулярной вектору В, то сила Лоренца F =Q[ vB ] постоянна по модулю и нормальна к траектории частицы. Согласно второму закону Ньютона, эта сила создает центростремительное ускорение. Отсюда следует, что частица будет двигаться по окружности, радиус r которой определяется из условия , откуда (1) Период вращения частицы T, . Подставив сюда выражение (1), получим , (2) т. е. период вращения частицы в однородном магнитном поле определяется только величиной, обратной удельному заряду (Q/m) частицы, и магнитной индукцией поля, но не зависит от ее скорости (при v <<С). Рис. 1 Если скорость v заряженной частицы направлена под углом a к вектору В (рис.1), то ее движение можно представить в виде двух движений: 1) равномерного прямолинейного движения вдоль поля со скоростью ; 2) равномерного движения со скоростью по окружности в плоскости, перпендикулярной полю. Радиус окружности определяется формулой (1). В результате сложения обоих движений возникает движение по спирали, ось которой параллельна магнитному полю (рис. 1). Шаг винтовой линии Подставив в последнее выражение (2), получим . Направление, в котором закручивается спираль, зависит от знака заряда частицы. Не нашли, что искали? Воспользуйтесь поиском:
|