ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Серная кислота. Сульфаты
Серная кислота H2SO4. Оксокислота. Бесцветная жидкость, очень вязкая (маслообразная), весьма гигроскопичная. Молекула имеет искаженно‑тетраэдрическое строение [S(O)2(OH)2] (sр3‑гибридизация), содержит ковалентные σ‑связи S – ОН и σπ‑связи S=O. Ион SO42‑ имеет правильно‑тетраэдрическое строение [S(O)4]. Обладает широким температурным интервалом жидкого состояния (~300 градусов). При нагревании выше 296 °C частично разлагается. Перегоняется в виде азеотропной смеси с водой (массовая доля кислоты 98,3 %, температура кипения 296–340 °C), при более сильном нагревании разлагается полностью. Неограниченно смешивается с водой (с сильным экзо ‑эффектом). Сильная кислота в растворе, нейтрализуется щелочами и гидратом аммиака. Переводит металлы в сульфаты (при избытке концентрированной кислоты в обычных условиях образуются растворимые гидросульфаты), но металлы Be, Bi, Со, Fe, Mg и Nb пассивируются в концентрированной кислоте и не реагируют с ней. Реагирует с основными оксидами и гидроксидами, разлагает соли слабых кислот. Слабый окислитель в разбавленном растворе (за счет НI), сильный – в концентрированном растворе (за счет SVI). Хорошо растворяет SO3 и реагирует с ним (образуется тяжелая маслообразная жидкость – олеум, содержит H2S2O7). Качественная реакция на ион SO42‑ – осаждение белого сульфата бария BaSO4 (осадок не переводится в раствор соляной и азотной кислотами, в отличие от белого осадка BaSO3). Применяется в производстве сульфатов и других соединений серы, минеральных удобрений, взрывчатых веществ, красителей и лекарственных препаратов, в органическом синтезе, для «вскрытия» (первого этапа переработки) промышленно важных руд и минералов, при очистке нефтепродуктов, электролизе воды, как электролит свинцовых аккумуляторов. Ядовита, вызывает ожоги кожи. Уравнения важнейших реакций:
Получение в промышленности: а) синтез SO2 из серы, сульфидных руд, сероводорода и сульфатных руд: S + O2 (воздух) = SO2 (280–360 °C) 4FeS2 + 11O2 (воздух) = 8 SO2 + 2Fe2O3 (800 °C, обжиг) 2H2S + 3O2 (изб.) = 2 SO2 + 2Н2O (250–300 °C) CaSO4 + С (кокс) = СаО + SO2 + СО (1300–1500 °C) б) конверсия SO2 в SO3 в контактном аппарате:
в) синтез концентрированной и безводной серной кислоты: Н2O (разб. H2SO4) + SO3 = H2SO4 (конц., безводн.) (поглощение SO3 чистой водой с получением H2SO4 не проводится из‑за сильного разогревания смеси и обратного разложения H2SO4, см. выше); г) синтез олеума – смеси безводной H2SO4, дисерной кислоты H2S2O7 и избыточного SO3. Растворенный SO3 гарантирует безводность олеума (при попадании воды тут же образуется H2SO4), что позволяет безопасно перевозить его в стальных цистернах. Сульфат натрия Na2SO4. Оксосоль. Белый, гигроскопичный. Плавится и кипит без разложения. Образует кристаллогидрат (минерал мирабилит), легко теряющий воду; техническое название глауберова соль. Хорошо растворим в воде, не гидролизуется. Реагирует с H2SO4 (конц.), SO3. Восстанавливается водородом, коксом при нагревании. Вступает в реакции ионного обмена. Применяется в производстве стекла, целлюлозы и минеральных красок, как лекарственное средство. Содержится в рапе соляных озер, в частности в заливе Кара‑Богаз‑Гол Каспийского моря. Уравнения важнейших реакций:
Гидросульфат калия KHSO4. Кислая оксосоль. Белый, гигроскопичный, но кристаллогидратов не образует. При нагревании плавится и разлагается. Хорошо растворим в воде, в растворе анион подвергается диссоциации, среда раствора сильнокислотная. Нейтрализуется щелочами. Применяется как компонент флюсов в металлургии, составная часть минеральных удобрений. Уравнения важнейших реакций: 2KHSO4 = K2SO4 + H2SO4 (до 240 °C) 2KHSO4 = K2S2O7 + Н2O (320–340 °C) KHSO4 (разб.) + КОН (конц.) = K2SO4 + Н2O KHSO4 + КCl = K2SO4 + НCl (450–700 °C) 6KHSO4 + М2O3 = 2KM(SO4)2 + 2K2SO4 + 3H2O (350–500 °C, M = Al, Cr) Получение: обработка сульфата калия концентрированной (более чем 6O%‑ной) серной кислотой на холоду: K2SO4 + H2SO4 (конц.) = 2 KHSO4 Сульфат кальция CaSO4. Оксосоль. Белый, весьма гигроскопичный, тугоплавкий, при прокаливании разлагается. Природный CaSO4 встречается в виде очень распространенного минерала гипс CaSO4 2Н2O. При 130 °C гипс теряет часть воды и переходит в жжёный (штукатурный) гипс 2CaSO4 • Н2O (техническое название алебастр). Полностью обезвоженный (200 °C) гипс отвечает минералу ангидрит CaSO4. Малорастворим в воде (0,206 г/100 г Н2O при 20 °C), растворимость уменьшается при нагревании. Реагирует с H2SO4 (конц.). Восстанавливается коксом при сплавлении. Определяет большую часть «постоянной» жесткости пресной воды (подробнее см. 9.2). Уравнения важнейших реакций: 100–128 °C
Применяется как сырье в производстве SO2, H2SO4 и (NH4)2SO4, как флюс в металлургии, наполнитель бумаги. Приготовленный из жженого гипса вяжущий строительный раствор «схватывается» быстрее, чем смесь на основе Са(ОН)2. Затвердевание обеспечивается связыванием воды, образованием гипса в виде каменной массы. Используется жженый гипс для изготовления гипсовых слепков, архитектурно‑декоративных форм и изделий, перегородочных плит и панелей, каменных полов. Сульфат алюминия‑калия KAl(SO4)2. Двойная оксосоль. Белый, гигроскопичный. При сильном нагревании разлагается. Образует кристаллогидрат – алюжокалиевые квасцы. Умеренно растворим в воде, гидролизуется по катиону алюминия. Реагирует со щелочами, гидратом аммиака. Применяется как протрава при крашении тканей, дубитель кож, коагулянт при очистке пресной воды, компонент составов для проклеивания бумаги, наружное кровоостанавливающее средство в медицине и косметологии. Образуется при совместной кристаллизации сульфатов алюминия и калия. Уравнения важнейших реакций:
Сульфат хрома(III) – калия KCr(SO4)2. Двойная оксосоль. Красный (гидрат темно‑фиолетовый, техническое название хрожокалиевые квасцы). При нагревании разлагается без плавления. Хорошо растворим в воде (серо‑синяя окраска раствора отвечает аквакомплексу [Cr(Н2O)6]3+), гидролизуется по катиону хрома(III). Реагирует со щелочами, гидратом аммиака. Слабый окислитель и восстановитель. Вступает в реакции ионного обмена. Качественные реакции на ион Cr3+ – восстановление до Cr2+ или окисление до желтого CrO42‑. Применяется как дубитель кож, протрава при крашении тканей, реактив в фотографии. Образуется при совместной кристаллизации сульфатов хрома(III) и калия. Уравнения важнейших реакций:
Сульфат марганца (II) MnSO4. Оксосоль. Белый, при прокаливании плавится и разлагается. Кристаллогидрат MnSO4 5Н2O – красно‑розовый, техническое название марганцевый купорос. Хорошо растворим в воде, светло‑розовая (почти бесцветная) окраска раствора отвечает аквакомплексу [Mn(Н2O)6]2+; гидролизуется по катиону. Реагирует со щелочами, гидратом аммиака. Слабый восстановитель, реагирует с типичными (сильными) окислителями. Качественные реакции на ион Mn2+ – конмутация с ионом MnO4 и исчезновение фиолетовой окраски последнего, окисление Mn2+ до MnO4 и появление фиолетовой окраски. Применяется для получения Mn, MnO2 и других соединений марганца, как микроудобрение и аналитический реагент. Уравнения важнейших реакций:
Получение: 2MnO2 + 2H2SO4 (конц.) = 2 MnSO4 + O2↑ + 2H2O (100 °C) Сульфат железа (II) FeSO4. Оксосоль. Белый (гидрат светло‑зеленый, техническое название железный купорос), гигроскопичный. Разлагается при нагревании. Хорошо растворим в воде, в малой степени гидролизуется по катиону. Быстро окисляется в растворе кислородом воздуха (раствор желтеет и мутнеет). Реагирует с кислотами‑окислителями, щелочами, гидратом аммиака. Типичный восстановитель. Применяется как компонент минеральных красок, электролитов в гальванотехнике, консервант древесины, фунгицид, лекарственное средство против анемии. В лаборатории чаще берется в виде двойной соли Fe(NH4)2(SO4)2 6Н2O (соль Мора), более устойчивой к действию воздуха. Уравнения важнейших реакций:
Получение: Fe + H2SO4 (разб.) = FeSO4 + H2↑ FeCO3 + H2SO4 (разб.) = FeSO4 + CO2↑ + H2O
7.4. Неметаллы VA‑группы
Азот. Аммиак
Азот – элемент 2‑го периода и VA‑группы Периодической системы, порядковый номер 7. Электронная формула атома [2He]2s22p3, характерные степени окисления 0, ‑III, +III и +V, реже +II, +IV и др.; состояние Nv считается относительно устойчивым. Шкала степеней окисления азота:
Азот обладает высокой электроотрицательностью (3,07), третий после F и О. Проявляет типичные неметаллические (кислотные) свойства. Образует различные кислородсодержащие кислоты, соли и бинарные соединения, а также катион аммония NH4+ и его соли. В природе – семнадцатый по химической распространенности элемент (девятый среди неметаллов). Жизненно важный элемент для всех организмов. Азот N2. Простое вещество. Состоит из неполярных молекул с очень устойчивой σππ‑связью N ≡ N, этим объясняется химическая инертность азота при обычных условиях. Бесцветный газ без вкуса и запаха, конденсируется в бесцветную жидкость (в отличие от O2). Главная составная часть воздуха: 78,09 % по объему, 75,52 % по массе. Из жидкого воздуха азот выкипает раньше кислорода O2. Малорастворим в воде (15,4 мл/1 л Н2O при 20 °C), растворимость азота меньше, чем у кислорода. При комнатной температуре N2 реагирует только с литием (во влажной атмосфере), образуя нитрид лития Li3N, нитриды других элементов синтезируют при сильном нагревании: N2 + 3Mg = Mg3N2 (800 °C) В электрическом разряде N2 реагирует с фтором и в очень малой степени – с кислородом:
Обратимая реакция получения аммиака протекает при 500 °C, под давлением до 350 атм и обязательно в присутствии катализатора (Fe/F2O3/FeO, в лаборатории Pt):
В соответствии с принципом Ле‑Шателье увеличение выхода аммиака должно происходить при повышении давления и понижении температуры. Однако скорость реакции при низких температурах очень мала, поэтому процесс ведут при 450–500 °C, достигая 15 %‑ного выхода аммиака. Непрореагировавшие N2 и Н2 возвращают в реактор и тем самым увеличивают степень протекания реакции. Азот химически пассивен по отношению к кислотам и щелочам, не поддерживает горения. Получение в промышленности – фракционная дистилляция жидкого воздуха или удаление из воздуха кислорода химическим путем, например по реакции 2С (кокс) + O2 = 2СО при нагревании. В этих случаях получают азот, содержащий также примеси благородных газов (главным образом аргон). В лаборатории небольшие количества химически чистого азота можно получить по реакции конмутации при умеренном нагревании: N‑IIIH4NIIIO2(т) = N20 + 2H2O (60–70 °C) NH4Cl(p) + KNO2(p) = N20↑ + KCl + 2H2O (100 °C) Применяется для синтеза аммиака, азотной кислоты и других азотсодержащих продуктов, как инертная среда проведения химических и металлургических процессов и хранения огнеопасных веществ. Аммиак NH3. Бинарное соединение, степень окисления азота равна – III. Бесцветный газ с резким характерным запахом. Молекула имеет строение незавершенного тетраэдра [: N(H)3)] (sр3‑гибридизация). Наличие у азота в молекуле NH3 донорной пары электронов на sр3‑гибридной орбитали обусловливает характерную реакцию присоединения катиона водорода, при этом образуется катион аммония NH4+. Сжижается под избыточным давлением при комнатной температуре. В жидком состоянии ассоциирован за счет водородных связей. Термически неустойчив. Хорошо растворим в воде (более 700 л/1 л Н2O при 20 °C); доля в насыщенном растворе равна = 34 % по массе и = 99 % по объему, рН = 11,8. Весьма реакционноспособный, склонен к реакциям присоединения. Crорает в кислороде, реагирует с кислотами. Проявляет восстановительные (за счет N‑III) и окислительные (за счет НI) свойства. Осушается только оксидом кальция. Качественные реакции – образование белого «дыма» при контакте с газообразным НCl, почернение бумажки, смоченной раствором Hg2(NO3)2. Промежуточный продукт при синтезе HNO3 и солей аммония. Применяется в производстве соды, азотных удобрений, красителей, взрывчатых веществ; жидкий аммиак – хладагент. Ядовит. Уравнения важнейших реакций:
Получение: в лаборатории – вытеснение аммиака из солей аммония при нагревании с натронной известью (NaOH + СаО):
или кипячение водного раствора аммиака с последующим осушением газа. В промышленности аммиак синтезируют из азота (см.) с водородом. Выпускается промышленностью либо в сжиженном виде, либо в виде концентрированного водного раствора под техническим названием аммиачная вода. Гидрат аммиака NH3 Н2O. Межмолекулярное соединение. Белый, в кристаллической решетке – молекулы NH3 и Н2O, связанные слабой водородной связью H3N… НОН. Присутствует в водном растворе аммиака, слабое основание (продукты диссоциации – катион NH4‑ и анион ОН‑). Катион аммония имеет правильно‑тетраэдрическое строение (sp3‑гибридизация). Термически неустойчив, полностью разлагается при кипячении раствора. Нейтрализуется сильными кислотами. Проявляет восстановительные свойства (за счет NIII) в концентрированном растворе. Вступает в реакции ионного обмена и комплексообразования. Качественная реакция – образование белого «дыма» при контакте с газообразным НCl. Применяется для создания слабощелочной среды в растворе, при осаждении амфотерных гидроксидов. В 1М растворе аммиака содержится в основном гидрат NH3 Н2O и лишь 0,4 % ионов NH4+ и ОН‑ (за счет диссоциации гидрата); таким образом, ионный «гидроксид аммония NH4OH» практически не содержится в растворе, нет такого соединения и в твердом гидрате. Уравнения важнейших реакций: NH3 Н2O (конц.) = NH3↑ + Н2O (кипячение с NaOH) NH3 Н2O + НCl (разб.) = NH4Cl + Н2O 3(NH3 Н2O) (конц.) + CrCl3 = Cr(OH)3↓ + 3NH4Cl 8(NH3 Н2O) (конц.) + ЗBr2(р) = N2↑ + 6NH4Br + 8Н2O (40–50 °C) 2(NH3 Н2O) (конц.) + 2КMnO4 = N2↑ + 2MnO2↓ + 4Н2O + 2КОН 4(NH3 Н2O) (конц.) + Ag2O = 2[Ag(NH3)2]OH + 3H2O 4(NH3 Н2O) (конц.) + Cu(OH)2 + [Cu(NH3)4](OH)2 + 4Н2O 6(NH3 Н2O) (конц.) + NiCl2 = [Ni(NH3)6]Cl2 + 6Н2O Разбавленный раствор аммиака (3–10 %‑ный) часто называют нашатырным спиртом (название придумано алхимиками), а концентрированный раствор (18,5–25 %‑ный) – аммиачной водой (выпускается промышленностью).
Не нашли, что искали? Воспользуйтесь поиском:
|