ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Реакции ионного обмена
В разбавленных растворах электролитов (кислот, оснований, солей) химические реакции протекают обычно при участии ионов. При этом все элементы реагентов могут сохранять свои степени окисления (обменные реакции) или изменять их (окислительно‑восстановительные реакции). Примеры, приводимые далее, относятся к обменным реакциям (о протекании окислительно‑восстановительных реакций см. разд. 14). В соответствии с правилом Бертолле, ионные реакции протекают практически необратимо, если образуются твердые малорастворимые вещества (они выпадают в осадок), легколетучие вещества (они выделяются в виде газов) или растворимые вещества – слабые электролиты (в том числе и вода). Ионные реакции изображаются системой уравнений – молекулярным, полным и кратким ионным. Ниже полные ионные уравнения опущены (читателю предлагается составить их самому). При написании уравнений ионных реакций надо обязательно руководствоваться таблицей растворимости (см. табл. 8). Примеры реакций с выпадением осадков: а)
б)
в)
г)
Внимание! Указанные в таблице растворимости (см. табл. 15) малорастворимые («м») и практически нерастворимые («н») соли выпадают в осадок именно в том виде, как они представлены в таблице (СаF2↓, PbI2↓, Ag2SO4↓, AlPO4↓ и т. д.). В табл. 15 не указаны карбонаты – средние соли с анионом CO32‑. Следует иметь в виду, что: 1) К2СO3, (NH4)2CO3 и Na2CO3 растворимы в воде; 2) Ag2CO3, ВаСO3 и СаСO3 практически нерастворимы в воде и выпадают в осадок как таковые, например:
3) соли остальных катионов, такие как MgCO3, CuCO3, FeCO3, ZnCO3 и другие, хотя и нерастворимы в воде, но не осаждаются из водного раствора при проведении ионных реакций (т. е. их нельзя получить этим способом). Например, карбонат железа (II) FeCO3, полученный «сухим путем» или взятый в виде минерала сидерит, при внесении в воду осаждается без видимого взаимодействия. Однако при попытке его получения по обменной реакции в растворе между FeSO4 и К2СO3 выпадает осадок основной соли (приведен условный состав, на практике состав более сложный) и выделяется углекислый газ:
Аналогично FeCO3, сульфид хрома (III) Cr2S3 (нерастворимый в воде) не осаждается из раствора:
В табл. 15 не указаны также соли, которые разлагаются водой – сульфид алюминия Al2S3 (а также BeS) и ацетат хрома (III) Cr(СН3СОО)3:
Следовательно, эти соли также нельзя получить по обменной реакции в растворе:
(в последней реакции состав осадка более сложный; подробнее такие реакции изучают в высшей школе). Примеры реакций с выделением газов:
Примеры реакций с образованием слабых электролитов:
Если реагенты и продукты обменной реакции не являются сильными электролитами, ионный вид уравнения отсутствует, например:
Гидролиз солей
Гидролиз соли – это взаимодействие ее ионов с водой, приводящее к появлению кислотной или щелочной среды, но не сопровождающееся образованием осадка или газа (ниже речь идет о средних солях). Процесс гидролиза протекает только с участием растворимых солей и состоит из двух этапов: 1) диссоциация соли в растворе – необратимая реакция (степень диссоциации α = 1, или 100 %); 2) собственно гидролиз, т. е. взаимодействие ионов соли с водой, – обратимая реакция (степень гидролиза α < 1, или 100 %). Уравнения 1‑го и 2‑го этапов – первый из них необратим, второй обратим – складывать нельзя! Отметим, что соли, образованные катионами щелочей и анионами сильных кислот, гидролизу не подвергаются, они лишь диссоциируют при растворении в воде. В растворах солей КCl, NaNO3, Na2SO4 и BaI2 среда нейтральная. В случае взаимодействия аниона растворенной соли с водой процесс называется гидролизом соли по аниону. 1)
2)
Диссоциация соли KNO2 протекает полностью, гидролиз аниона NO2 – в очень малой степени (для 0,1М раствора – на 0,0014 %), но этого оказывается достаточно, чтобы раствор стал щелочным (среди продуктов гидролиза присутствует ион ОН‑), в нем рН = 8,14. Гидролизу подвергаются анионы только слабых кислот (в данном примере – нитрит‑ион NO2‑, отвечающий слабой азотистой кислоте HNO2). Анион слабой кислоты притягивает к себе катион водорода, имеющийся в воде, и образует молекулу этой кислоты, а гидроксид‑ион остается свободным:
Список гидролизующихся анионов:
Примеры: а)
б)
в)
г)
д)
Обратите внимание, что в примерах (в – д) нельзя увеличивать число молекул воды и вместо гидроанионов (HCO3‑, HPO42‑, HS‑) писать формулы соответствующих кислот (Н2СO3, Н3РO4, H2S). Гидролиз – обратимая реакция, и протекать «до конца» (до образования кислоты НnА) он не может. Если бы такая неустойчивая кислота, как Н2СO3, образовалась в растворе своей соли Na2CO3, то наблюдалось бы выделение из раствора газа СO2 (Н2СO3 = СO2↓ + Н2O). Однако при растворении соды в воде образуется прозрачный раствор без газовыделения, что является свидетельством неполноты протекания гидролиза аниона СО| с появлением в растворе только гидроаниона угольной кислоты HCOg. Степень гидролиза соли по аниону зависит от степени диссоциации продукта гидролиза – кислоты (HNO2, НClO, HCN) или ее гидроаниона (HCO3‑, HPO42‑, HS‑); чем слабее кислота, тем выше степень гидролиза. Например, ионы СО32‑, РО43‑ и S2‑ подвергаются гидролизу в большей степени (в 0,1 М растворах ~ 5 %, 37 % и 58 % соответственно), чем ион NO2, так как диссоциация Н2СO3 и H2S по 2‑й ступени, а Н3РO4 по 3‑й ступени (т. е. диссоциация ионов HCO3‑, HS‑ и HPO42‑) протекает значительно меньше, чем диссоциация кислоты HNO2. Поэтому растворы, например, Na2CO3, К3РO4 и BaS будут сильнощелочными (в чем легко убедиться по мылкости раствора соды на ощупь). Избыток ионов ОН в растворе легко обнаружить индикатором или измерить специальными приборами (рН‑метрами). Если в концентрированный раствор сильно гидролизующейся по аниону соли, например Na2CO3, внести алюминий, то последний (вследствие амфотерности) прореагирует с ОН‑
и будет наблюдаться выделение водорода. Это – дополнительное доказательство протекания гидролиза иона СО32‑ (ведь в раствор Na2CO3 мы не добавляли щелочь NaOH!). В случае взаимодействия катиона растворенной соли с водой процесс называется гидролизом соли по катиону:
Диссоциация соли Ni(NO3)2 протекает полностью, гидролиз катиона Ni2+ – в очень малой степени (для 0,1 М раствора – на 0,001 %), но этого оказывается достаточно, чтобы раствор стал кислым (среди продуктов гидролиза присутствует ион Н+), в нем рН = 5,96. Гидролизу подвергаются катионы только малорастворимых основных и амфотерных гидроксидов и катион аммония NH4+. Гидролизуемый катион притягивает к себе анион ОН‑, имеющийся в воде, и образует соответствующий гидроксокатион, а катион Н+ остается свободным:
Катион аммония в этом случае образует слабое основание – гидрат аммиака:
Список гидролизующихся катионов:
Примеры: а)
б)
в)
г)
Обратите внимание, что в примерах (а – в) нельзя увеличивать число молекул воды и вместо гидроксокатионов FeOH2+, CrOH2+, ZnOH+ писать формулы гидроксидов FeO(OH), Cr(OH)3, Zn(OH)2. Если бы гидроксиды образовались, то из растворов солей FeCl3, Cr2(SO4)3 и ZnBr2 выпали бы осадки, чего не наблюдается (эти соли образуют прозрачные растворы). Избыток катионов Н+ легко обнаружить индикатором или измерить специальными приборами. Можно также проделать такой опыт. В концентрированный раствор сильно гидролизующейся по катиону соли, например AlCl3:
вносится магний или цинк. Последние прореагируют с Н+:
и будет наблюдаться выделение водорода. Этот опыт – дополнительное свидетельство протекания гидролиза катиона Al3+ (ведь в раствор AlCl3 мы не добавляли кислоту!).
Не нашли, что искали? Воспользуйтесь поиском:
|