Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Растворы электролитов.




(Задачи №№ 21 – 40)

Электролитами называются вещества, которые в растворе или расплаве распадаются (диссоциируют) на ионы. Вследствие диссоциации растворы и расплавы электролитов проводят электрический ток. Образование ионов в рас­плаве происходит в результате разрушения ионной кристаллической решётки-это физический процесс. В растворе распад электролита на ионы осуществляется в результате химического взаимодействия растворяемого электролита с молекулами растворителя.

По способности к диссоциации в растворе электролиты делятся на силь­ные и слабые. Сильные электролиты диссоциируют на ионы полностью, слабые-частично.

Пусть KnAm-сильный электролит. Уравнение его диссоциации записыва­ется как уравнение необратимого процесса: KnAm=nKm+ + mAn-. Например, Al 2 (SO 4) 3 =2Al3++3(SO 4)2-. В растворе сильного электролита концентрация его ионов определяется исключительно концентрацией раствора.

Пример 2.1. Концентрация ионов в 0,01М растворе гидроксида тетрамминмеди (II) [Cu(NH 3 ) 4 ](OH) 2.

Являясь сильным электролитом (см. ниже), гидроксид тетрамминмеди (II). в растворе диссоциирует на ионы полностью согласно уравнению: [Cu(NH 3 ) 4 ](OH) 2 =[Cu(NH 3 ) 4 ]2+ + 2OH-.

Из уравнения видно, что при диссоциации 1 моля тетрамминмеди (II) образуется 1 моль комплексных катионов [Cu(NH 3 ) 4 ]2+ и 2 моля гидроксид-ионов OH-. Т.к. согласно условию раствор – сантимолярный, концентрация комплексных катионов, образующихся при полной диссоциации электролита, равна 0,01 моль/л, а концентрация ионов OH-- 0,02 моль/л.

Если электролит KnAm-слабый, в его растворе устанавливается химическое равновесие между электролитом, остающимся в недиссоциированном виде, и ионами в растворе согласно уравнению: КnAmÛnKm+ +mAn-. Такое равновесие на­зывается ионным. Например, H2SO3Û2H+ +SO32-.

Как и любое химическое равновесие, ионное равновесие количественнно характеризуется величиной константы равновесия, называемой константой диссоциации KKnAm, которая для слабого электролита KnAm записывается:

KKnAm=([Km+]n[An- ]m)/[KnAm] (2.1)

где [Km+] и [An-]-соответственно, равновесные концентрации катионов и анионов слабого электролита, а [KnAm]-равновесная концентрация электролита, остающегося в недиссоциированном состоянии. На­пример, для слабой кислоты H2SO3 (уравнение её диссоциации см. выше) кон­стантой диссоциации является выражение: КH2SO3=([H+]2[SO32-])/[H2SO3].

Величина константы диссоциации количественно характеризует способность слабого электролита к разложению в растворе на ионы. Из выражения константы диссоциации вытекает, что чем больше её величина, тем выше способность слабого электролита к диссоциации.

Универсальной количественной характеристикой диссоциации электролита является степень его диссоциации a, которая определяется как отношение числа молей диссоциированного электролита к общему числу молей электролита в растворе. Исходя из определения сильных и слабых электролитов, для сильных электролитов a=1(100%), для слабых - a<1(<100%). Типичные слабые электролиты, как правило, имеют значение a<0,01(<1%). Поэтому в практических расчётах концентрацию недиссоциированного слабого электролита можно считать равной общей концентрации раствора.

Пример 2.2. Расчёт концентраций ионов в 0,01М растворе уксусной кислоты СН3СООН.

Записываем уравнение диссоциации уксусной кислоты и выражение её константы диссоциации [6].

СН3СООНÛСН3СОО- + Н+; Ксн3соон=([СН3СОО-][Н+])/[СН3СООН]=1,75×10-5

Уксусная кислота – типичный слабый электролит со значением a»0,01. Поэтому концентрацию недиссоциированной кислоты принимаем равной общей концентрации раствора, т.е. [СН3СООН]=0,01моль/л.

Из уравнения диссоциации уксусной кислоты видно, что концентрации ионов СН3СОО- и Н+ равны. Следовательно выражение её константы диссоциации может быть записано в виде: Ксн3соон=[Н+]2/[СН3СООН]. Из этого уравнения находим:

+]=[CH 3 COO-]=Ö Ксн3соон/[СН3СООН]= Ö1,75×10-5×0,01=Ö17,5×10-8=4,2×10-4.

В общем виде для любого слабого электролита КА, диссоциирующего по уравнению КАÛ К+-, концентрации ионов в растворе находятся из соотношения:

[K+]=[A-]=Ö KKA×СМ (2.2)

где KKA – константа диссоциации слабого электролита, а С М – его молярная концентрация.

В отличие от константы диссоциации, величина которой зависит только от природы слабого электролита и температуры, на величину степени диссоциации слабого электролита сильное влияние оказывает также концентрация раствора, а именно, степень диссоциации увеличивается при уменьшении концентрации раствора (при его разбавлении). Эта зависимость количественно устанавливается законом разбавления Оствальда, который в практических расчётов для любого слабого электролита КА, диссоциирующего по уравнению

КАÛ К+-, используется в виде:

a»Ö KKAМ (2.3)

где, как и в выражении (2.2), KKA – константа диссоциации слабого электролита, а С М – его молярная концентрация.

В водных растворах сам растворитель – вода – является слабым электролитом. Вода диссоциирует согласно уравнению: Н2ОÛН+ + ОН-. При этом в обычных температурных условиях (при Т=220С) в любом водном растворе концентрации ионов Н+ и ОН- взаимосвязаны, а именно:

[H+][OH-]=К Н2О=10-14 (2.4)

К Н2О=10-14 называется ионным произведением воды.

На практике для характеристики водных растворов электролитов пользуются не абсолютными значениями концентраций ионов Н+ и ОН- , а величиной водородного показателя (рН):

рН= - lg[H+] (2.5)

Пример 2.3. рН 0,01М растворов [Cu(NH 3 ) 4 ](OH) 2 и СН 3 СООН.

Комплексное основание [Cu(NH 3 ) 4 ](OH) 2, являясь сильным электролитом, диссоциирует полностью, образуя гидроксид-ионы, концентрация которых в 0,01М растворе равна 0,02 моль/л (см. пример 2.1).

Из выражения (2.4) находим: [H + ]= К Н2О /[OH - ]=10 -14 /0,02=5×10 -13 моль/л. Соответственно этому значение рН данного раствора равно: рН= - lg[H + ]= - lg5×10 -13 =12,3.

В 0,01М растворе уксусной кислоты СН 3 СООН, являющейся слабым электролитом, концентрация ионов Н + равна: [H + ]=4,2×10-4. Отсюда по уравнению (2.5) находим: рН= - lg[H + ]= - lg 4,2×10-4=3,4.

По химическому составу ионов, образующихся при диссоциации, электролиты делятся на четыре основных класса: кислоты, основания, амфолиты и соли.

По Аррениусу, кислотами называются электролиты, при первичной диссоциации которых образуются ионы Н+. Например:

HCl=H+ +Cl-; H2SO4=2H+ +SO42-

Имеется 2 группы кислот: бескислородные (HCl, HCN и пр.) и кислородсодержащие (оксокислоты), например, H3PO4, H2SO4. Среди бескислородных кислот сильными являются три: HCl, HBr, HI; остальные бескислородные кислоты-слабые. Для определения силы оксокислот следует руководствоваться правилом: если степень окисления кислотообразующего элемента равна +6 и выше, такая кислота- сильная (исключение HNO3). Например, H2SO4-сильная кислота, поскольку степень окисления серы в ней равна +6, а H2SO3-слабая кислота т.к. степень окисления серы здесь равна +4.

Основаниями являются электролиты, при диссоциации которых образуются гидроксид-ионы ОН-. Например:

NaOH=Na+ +OH-; Cu(OH)2=Cu2+ +2OH-






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных