ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
МОРФОЛОГИЯ КРИСТАЛЛОВ АЛМАЗА 9 страницаДефектные кристаллы алмаза иногда раскалываются при нагревании. Однако совершенные кристаллы можно нагревать до температуры 1800-1850° С и мгновенно охлаждать; при этом они не разрушаются, а наоборот, по данным некоторых исследователей, упрочняются в связи с частичным снятием напряжений. Полиморфный переход алмаза в графит в вакууме при нормальном давлении происходит при температуре около 1900° С, при этом в связи с большим увеличением удельного объема кристаллы алмазы разрушаются. В одной из своих работ Сиил (Seal, 1958) отметил, что при нагревании в вакууме до 1800° С кристалл алмаза весь почернел и на нем появились трещины, а при 2000° С он рассыпался па мелкие осколки. Характер преобразования кристалла алмаза в результате его перехода в графит почти по всему объему исследовался нами при нагревании алмазов в вольтовой дуге; в результате ноздействия высокой температуры кристаллы сильно графитизируются, вспучиваются и растрескиваются.
Графит, развивающийся по алмазу в результате аллотропного превращения, представляет собой смесь α- и β-форм. Ось [0001] графита ориентирована параллельно оси [111] алмаза [Титова, Футергендлер, 1962; Grenville–Wells, 1952). На основании этого было установлено, что клифтонит не является псевдоморфозой по алмазу (Londsdale, Milledge, 1965). В литературе иногда указывается, что графитизация алмаза начинается при более низких температурах, так как наблюдается почернение его поверхности уже при 1000-1200° С. Однако нужно иметь в виду, что в данном случае полиморфный переход под влиянием температуры не происходит, а только образуется пленка графита на поверхности алмаза под воздействием кислорода. Такого вида «графитизация» алмаза может происходить даже при 650° С, что описывается ниже в разделе, посвященном химическим свойствам алмазов. Подробные данные о переходе алмаза в графит и других термических свойствах алмаза можно получить из специальных работ, посвященных этому вопросу (Bridgman, 1941; Evans, James, 1964; Berman, 1965).
ХИМИЧЕСКИЕ СВОЙСТВА АЛМАЗОВ
Алмазы стойки по отношению ко всем кислотам; последние He-оказывают никакого действия на их кристаллы даже при высоких температурах. С другой стороны, в расплавах щелочей, различных кислородных солей и металлов они сравнительно легко травятся. Опыты по травлению алмазов в этих средах проводились многими исследователями с различными целями: моделирование форм растворения, исследование фигур травления, воспроизведение скульптур, наблюдаемых на природных алмазах, исследование скоростей травления различных граней и др. Минимальная температура, при которой наблюдалось травление алмазов, была отмечена Пателом и Раманатаном (Patel, Ramanathan, 1962), производившими обработку алмазов в NaCl04 и КС1О3, т. е. в очень сильных окислителях. При большой экспозиции (181 час) образование треугольных фигурок травления на гранях (111) в их опытах происходило при 380° С. Некоторые исследователи производили травление алмазов в расплавах кимберлитов (Luzi, 1892; Frank, Puttick, 1958). Вполне очевидно, что в расплавах других пород алмазы также будут травиться в связи с воздействием на них кислорода, освобождающегося в результате термической диссоциации, а также частичного растворения углерода алмаза в силикатной среде. Алмазы травятся при высоких температурах в некоторых газовых средах: О. СО, СО2, Н, пары воды, Cl (Frank, Puttick, 1958). Большой практический и научный интерес имеют данные, полученные при исследовании реакций алмаза с кислородом при высоких температурах. Известно, что алмазы сгорают в струе кислорода при 720° С и на воздухе при 850° С. Однако при нагревании алмазов в системе с низким вакуумом (порядка 10-2 — 10-5 мм рт. ст.) под воздействием остаточного кислорода на их поверхности образуется черная плотная пленка графита, которая легко удаляется при кипячении в НС1О4. Совместно с А. В. Бочко нами производилось исследование поверхностной графитизации алмазов под влиянием катализирующего воздействия остаточного кислорода, сохраняющегося в системе при вакууме порядка 3 · 10-4 — 2 · 10-5 мм рт. ст. Алмазы нагревались в интервале температур 1100-1500° С. Исследовались два прозрачных обычных кристалла алмаза и два алмаза с темно-зеленой оболочкой (coated diamonds). Было проведено четыре опыта последовательного нагревания алмазов в вакууме 5 · 10-4 — 2 · 10-5 мм рт. ст. при температурах 1100, 1200, 1300 и 1500° С. В результате температурной обработки отобранные алмазы в вакууме покрывались с поверхности черной, плотной графитовой пленкой, которая не удалялась царской водкой. После обработки алмазов измерялось сопротивление, относительно характеризующее степень (толщину) развития поверхностной графитовой пленки, обладающей проводимостью в отличие от алмаза. После промывки в концентрированной НС1О4 поверхностная пленка полностью удалялась и сопротивление, как и до опыта, становилось равным бесконечно большой величине. Суммарно во всех четырех опытах алмазы последовательно нагревались при температуре от 1100 до 1500° С в течение 19 час. При этом потери в весе каждого кристалла составили ничтожные величины (мг): 0,152 (0,393%), 0,033 (0,082%), 0,036 (0,111%) и 0,017 (0,055%). Суммарно все четыре алмаза потеряли лишь 0,238 мг (0,237%). После четырех опытов все алмазы сохранили блестящую поверхность. Обычные кристаллы были совершенно прозрачны, как и до опыта, несмотря на длительную высокотем мературную обработку. Два кристалла IV разновидности (алмазы г оболочкой), имевшие первоначально темно-зеленый цвет, уже после нагревания при t = 1100° С оставались темными даже после удаления поверхностной черной пленки графита. После нагревания при t = 1200° С они стали совершенно черными. Однако черный цвет был вызван не графитизацией кристаллов по всему их объему, а почернением алмаза только вокруг микровключений, находящихся в большом количестве в пределах внешней зоны. Как установлено М. Сиилом (Seal, 1966), с включениями в оболочках кристаллов, этой разновидности тесно ассоциирует кислород. Очевидно, при высокотемпературной обработке алмаз графитизируется частично только на участках, граничащих с включениями, под воздействием этого кислорода. Между микровключениями алмаз сохраняет свой цвет; остается совершенно прозрачным и само внутренее ядро кристалла, что хорошо видно в шлифах, сделанных из этих алмазов после их обработки. Таким образом, в результате нагревания алмазов при температурах до 1500° С наблюдалась только лишь самая незначительная поверхностная графитизация алмаза, происходящая под влиянием воздействия незначительного количества кислорода, сохраняющегося в системе нагрева даже при высоком вакууме, равном 10-4 — 10-5 мм рт. ст.; при более низком вакууме образуется относительно более толстая пленка, однако при сравнительно высоком парциальном давлении кислорода черная графитовая пленка сгорает, так как скорость ее образования становится меньше скорости окисления (выгорания).
Глава 7 Не нашли, что искали? Воспользуйтесь поиском:
|