ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Разложение функции в степенной ряд. Необходимое и достаточное условие разложения функции в степенной ряд. Достаточное условие разложения функции в степенной ряд.Если бесконечно дифференцируема в окрестности точки и формально составленный степенной ряд для этой функции сходится и его сумма равна , то говорят, что разлагается в степенной ряд. Теорема 1. Если функция разлагается в степенной ряд, то это разложение единственно. Теорема 2. (необходимое и достаточное условие разложения функции в степенной ряд). Для того, чтобы разлагалась в степенной ряд, необходимо и достаточно, чтобы была бесконечно дифференцируема в окрестности точки и чтобы в формуле Тейлора (4) . Теорема 3. (достаточное условие разложения функции). Если в окрестности точки функция бесконечно дифференцируема и все её производные ограничены по модулю сверху числом M, то есть , то функция разлагается в степенной ряд. Ряды Тейлора и Маклорена – степенные ряды, позволяют оценить ошибки в приближенных равенствах, получить приближенные равенства нового типа. Не нашли, что искали? Воспользуйтесь поиском:
|