ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Пределы и непрерывность функций 2 переменных. Особые точкиПусть функция z = О: Число А называется пределом функции f(x, у) при стремлении т. М(х, у) к т.
Основные теоремы о пределах функции одной переменной (см. разд. 7.5) справедливы и для функций двух и большего числа переменных. О: Функция z = 2) О: Функция z =f(x, у) называется непрерывной на некотором множестве Е О: Точка Примеры: 1) Функция не определена в точках, в которых знаменатель обращается в нуль 2)
Для функции трех и более переменных определения предела и непрерывности аналогичны. О: Число А называется пределом функции у =
следует
В математике особой точкой векторного поля называется точка, в которой векторное поле равно нулю. Особая точка векторного поля является положением равновесия или точкой покоя динамической системы, определяемой данным векторным полем: фазовая траектория с началом в особой точке состоит в точности из этой особой точки, а соответствующая ей интегральная кривая представляет собой прямую, параллельную оси времени. В любой малой окрестности фазового пространства, не содержащей особых точек, векторное поле можно выпрямить подходящей заменой координат — тем самым, поведение системы вне особых точек устроено очень просто. Напротив, в окрестности особой точки система может обладать очень сложной динамикой. Говоря о свойствах особых точек векторных полей, обычно подразумевают свойства соответствующей системы в малой окрестности особой точки. Не нашли, что искали? Воспользуйтесь поиском:
|