ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Координаты в пространстве.
Определение. Пусть в пространстве заданы три координатные оси OX, OY и OZ с некомпланарными ортами , , соответственно. Тогда четверка (0, , , ) называется афинным репером, или афинной системой координат в пространстве. Точка 0 - начало координат, векторы , , - базисные векторы. Так как векторы , , - линейно независимы, то для любого вектора имеет место разложение: = x + y + z Числа x, y, z называются координатами точки М (записывается: М (х, у, z)), называется радиус-вектором точки М с координатами х, у, z (записывается: = (х, у, z)), причем х называется абсциссой, у - ординатой, z - аппликатой. Афинную систему часто обозначают через OXYZ. Оси OX, OY, OZ называют соответственно осями абсцисс, ординат и аппликат. Плоскости, определяемые координатными осями, т.е. OXY, OYZ, OXZ, называют координатными плоскостями. Эти плоскости делят все пространство на восемь частей, называемых координатными октантами. Если упорядоченная тройка векторов , , является правой, то афинную систему называют правой, в противном случае - левой. В дальнейшем под афинной системой будем понимать правую систему. Если базисные векторы , , попарно взаимно ортогональны, то афинная система координат называется декартовой (прямоугольной), а базисные векторы обозначается соответственно . В частности, если даны точки А (х 1, у 1, z 1), В (х 2, у 2, z 2), то Векторы = (х1,у1,z1) и = (х2,у2,z2) коллинеарны тогда и только тогда, когда их соответствующие координаты пропорциональны, т.е.
Не нашли, что искали? Воспользуйтесь поиском:
|