ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Термическая обработка дуралюминовДуралюминами называют сплавы на основе системы Al-Cu-Mg с добавками марганца. Большинство промышленных дуралюминов содержат около 4 % Cu, до 2,5 % Mg, менее 1 % Mn. Кроме того, в сплавах присутствуют небольшие количества постоянных примесей – Fe и Si (приложение А, таблица А.5). Структура дуралюминов в отожженном состоянии представлена твердым раствором – альфа легирующих элементов в Al и включениями интерметаллидных фаз: CuAl2 (тета-фаза), CuMgAl2 (S-фаза), Cu2AlFe (N-фаза), Mg2Si и других (рисунок 2 а). а) б) а – после отжига; б – после закалки Рисунок 2 –Микроструктура сплава Д16 Упрочнение дуралюминов достигают закалкой и последующим старением. Для обоснования выбора температуры закалки, а также для объяснения превращений, протекающих в сплавах при термообработке, можно в первом приближении использовать диаграмму состояния Al-Cu (рисунок 3), поскольку в дуралюминах медь является главным легирующим элементом. Из диаграммы видно, что растворимость меди в алюминии зависит от температуры и меняется от 0,5 % при 20 °С до 5,7 % при температуре эвтектики (548 °С). Следовательно, существует предпосылка возможности перевода двухфазных (состоящих из альфа-фазы и вторичных кристаллов CuА12) сплавов с концентрацией Cu до 5,7 % нагревом в однофазное состояние (альфа-твердый раствор) и последующей фиксации его быстрым охлаждением. При нагреве дуралюминов до температур закалки (500±5 °С) Mg2Si-, тета- и S-фазы растворяются в алюминии. После охлаждения в холодной воде структура закаленного сплава состоит из твердого раствора альфа с включениями малорастворимой при нагревании N-фазы (рисунок 3).
Рисунок 3 - Диаграмма состояния алюминий-медь Свежезакаленные дуралюмины имеют невысокую твердость и прочность, но повышенную пластичность, лишь несколько сниженную по сравнению с отожженным состоянием. Пересыщенный по отношению к равновесному (отожженному) состоянию сплав является метастабильным и при длительном пребывании в области нормальных температур (естественном старении) или при сравнительно непродолжительном нагреве (искусственном старении) изменяет свое состояние, приближаясь к равновесному. Превращения при старении приводят к значительным изменениям свойств сплава: возрастают прочность и твердость при заметном понижении пластичности (рисунок 4). Рисунок 4 – Изменение прочности сплавов системы Al-Cu в зависимости от температуры и продолжительности старения В процессе старения, на его начальной стадии, атомы легирующих элементов (в сплавах системы А1-Сu - атомы меди, расположенные в свежезакаленном сплаве случайно, собираются в определенных местах кристаллической решетки, образуя участки с резко повышенной концентрацией растворенного компонента, называемые зоны Гинье - Престона (зоны Г – П). В результате естественного старения образуются зоны толщиной от 0,5 до 1 мм и протяженностью от 3 до 6 нм (их называют зоны Г-П-1), вызывая упрочнение сплава. Если естественно состаренный сплав подвергнуть кратковременному нагреву до температуры 250-270 °С, то зоны Г - П растворятся и сплав возвратится в свежезакаленное состояние с характерными для него свойствами (низкой твердостью и высокой пластичностью). Это явление получило название возврат. После возврата сплав может быть вновь упрочнен при естественном или искусственном старении. При искусственном старении зоны Г - П укрупняются, достигая от 1 до 4 нм по толщине и от 20 до 30 нм по протяженности (зоны Г-П-2). Концентрация меди в них приближается к стехиометрическому соотношению в соединении СuА12. Дальнейшее развитие процессов искусственного старения приводит к преобразованию зон Г - П - 2 в частицы промежуточной тета-фазы, имеющий такой же химический состав, как тета-фаза, но с отличной от нее кристаллической решеткой, когерентно связанной с α-твердым раствором. При дальнейшем повышении температуры тета-фаза обосабливается от твердого раствора и превращается в стабильную коагулирующую тета-фазу. Таким образом, различают два вида старения: зонное, связанное с образованием только зон Г - П, и фазовое, при котором возникают метастабильные и стабильные фазы. Скорость искусственного старения сильно зависит от температуры (рисунок 4): повышение температуры ускоряет процесс. Однако в сплавах системы Al-Cu с 3-5 % меди получаемая при этом максимальная прочность тем ниже, чем выше температура старения. Наибольшее упрочнение получают при естественном старении в результате образования зон Г-П-1. Следует отметить, что не всегда максимум прочности достигается естественным старением, более того, во многих высокопрочных сплавах естественное старение не протекает вообще. В более сложных по химическому составу сплавах наибольшая прочность наблюдается при искусственном старении в результате образования метастабильных фаз (см. приложение А, таблица А.4, сплавы на основе системы Al-Mg-Si). Не нашли, что искали? Воспользуйтесь поиском:
|