Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Расчет жесткости шпиндельного узла




 

На жесткость рассчитывают шпиндельные узлы всех типов. При этом определяют упругое перемещение шпинделя в сечении его переднего конца, причем учитывают только деформации тела шпинделя и его опор. Собственные деформации обрабатываемой детали, режущего инструмента, конического или другого соединения инструмента со шпинделем определяют дополнительными расчетами, не относящимися к расчету шпиндельного узла на жесткость. В результате расчета определяют радиальную и осевую жесткость.

При расчете радиальной жесткости все силы приводят к двум взаимно перпендикулярным плоскостям Y и Z, проходящим через ось шпинделя. Вычисляют радиальное перемещение его переднего конца в этих плоскостях, а затем суммарное перемещение по формуле:

.

Необходимо учитывать существенное влияние осевой опоры на перемещение переднего конца шпинделя, что является следствием защемляющего (реактивного) момента, возникающего в осевой опоре и противоположного по знаку моменту нагрузки. Дополнительное радиальное перемещение представляет собой сдвиг переднего конца шпинделя под действием силы, возникающей как следствие защемляющего момента. Значения коэффициента, учитывающего при расчете жесткости шпинделя наличие в передней опоре защемляющего момента, приведены в табл. 6.1. Радиальное перемещение шпинделя в заданном сечении, например в плоскости Y,

d=d1+d2+d3+d4,

где d1 — перемещение, вызванное изгибом тела шпинделя;

- d 2 — перемещение, вызванное нежесткостью (податливостью) опор;

- d 3 — сдвиг, вызванный защемляющим моментом;

- d 4 — перемещение, вызванное податливостью контакта между кольцами подшипника и поверхностями шпинделя и корпуса.

Смещение переднего конца шпинделя зависит не только от его размеров, жесткости опор, нагрузок, но и от схемы нагружения (см. табл.6.1).

 

Таблица 6.1

Коэффициенты защемления

 

Схема шпиндельного узла Тип установленных подшипников Коэффициент защемления
в передней опоре в задней опоре
3182100;   0,45...0,65
    0,30…0,45
3182100;   0,30...0,45
    0,20...0,3
    0,15...0,2

 

 

При использовании первой схемыприводной элемент шпинделя расположен между его опорами (рис. 6.5).

 

Рис. 6.5. Составляющие перемещения шпинделя в расчетном сечении Рис. 6.6. Схемы к расчету шпиндельного узла на жесткость

 

Эта схема типична для токарных и фрезерных станков, а также для многоцелевых станков с ЧПУ. Радиальное упругое перемещение шпинделя в расчетной точке слагается из следующих перемещений: d1Q тела шпинделя под действием силы Q на приводном элементе, d2Q вызванного деформацией опор от силы Q, d тела шпинделя под действием силы резания Р, d вызванного деформацией опор от силы Р.

Примем обозначения: l — расстояние между передней A и задней В опорами шпинделя; а — вылет его переднего конца (консоль); b — расстояние от приводного элемента до передней опоры; I1 — среднее значение осевого момента инерции сечения консоли; I2 — среднее значение осевого момента инерции сечения шпинделя в пролете между опорами; S1 и S2 - площади сечения переднего конца и межопорной части шпинделя; Е — модуль упругости материала шпинделя; G — модуль сдвига материала шпинделя; jA и jB радиальная жесткость передней и задней опор; е — коэффициент защемления в передней опоре.

Упругое перемещение переднего конца шпинделя, слагающееся из всех названных выше перемещений, но без учета защемляющего момента определяется по формуле:

 

,

С учетом действия защемляющего момента в передней опоре перемещение переднего конца шпинделя определяется по формуле:

,

Угол поворота в передней опоре определяется по формуле:

,

В зависимостях под Р и Q понимают составляющие сил, приведенные к одной плоскости. Перед Q принимают знак "плюс" если силы Р и Q направлены в одну сторону, и знак "минус", если они направлены в противоположные стороны.

Введя в зависимости безразмерное отношение l = l/а, характеризующее относительную длину межопорной части шпинделя, из равенства dd/dl = 0 находят оптимальное значение l, а следовательно, и оптимальное по условию жесткости расстояние между опорами шпинделя.

При использовании второй схемы приводной элемент расположен на задней консоли на расстоянии с от задней опоры (рис. 6.6, а). Этот случай характерен для внутришлифовальных и отделочно-расточных головок. Перемещение переднего конца шпинделя с учетом защемляющего момента в передней опоре определяется по формуле:

Знаки перед Q соответствуют случаю, когда силы Р и Q направлены в одну сторону. Если же они направлены в противоположные стороны, знаки перед Q заменяются на противоположные. Перемещение переднего конца шпинделя при отсутствии защемляющего момента вычисляют при e =0.

При использовании третьей схемы шпиндель не нагружен силами от привода, на него действует только сила резания Р (рис. 6.6 б). Такие шпиндельные узлы часто применяют в прецизионных станках. Перемещение переднего конца шпинделя с учетом защемляющего момента в передней опоре определяется по формуле:

Без учета защемляющего момента:

 

Угол поворота шпинделя в передней опоре:

,

Значение l = l/а, оптимальное по условию жесткости шпиндельного узла, находят из уравнения:

В связи с тем, что с уменьшением межопорного расстояния биение шпинделей на подшипниках качения увеличивается, для них вводят ограничение l ³ 2,5.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных