ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Регулярная поверхность
Пусть Ф – элементарная поверхность, заданная уравнением . Определение 3.3. Поверхность Ф называется регулярной (k раз дифференцируемой), если функции x, y, z имеют непрерывные, частные производные до порядка k включительно, причём в каждой точке ранг матрицы А = равен двум. При k = 1поверхность называется гладкой. Замечание 3.2. Частные производные , и т.д. функций x, y, z будем обозначать . Таким образом, , . Найдём частные производные радиус–вектора по u и v: , . Тогда матрица А примет вид A = и состоит из координат векторов и . Условие, что ранг A равен двум означает, что векторы и не коллинеарны. Далее будем рассматривать только такие векторы. Как известно, из курса математического анализа, если функции x(u, v) и y(u, v) удовлетворяют условию , то вблизи данных значении u, v и соответствующих им значении x и y уравнения x=x(u, v) и y=y(u, v) могут быть разрешены относительно u, v. Таким образом, u=u(x, y), v=v(x, y) и получаем или – уравнение поверхности в явном виде. Не нашли, что искали? Воспользуйтесь поиском:
|