![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Определители любого порядка. Свойства определителей.Сначала опишем основные свойства определителей относительно преобразования матриц. Знание этих свойств поможет упрошать вычисления и находить определители произвольного порядка. Свойство 1. Определитель не меняется при транспонировании. Это означает, что определитель матрицы равен определителю транспонированной матрицы (матрицы, в которой строки заменены соответствующими столбцами). Исходя из первого свойства, в остальных свойствах мы можем говорить только о строках, подразумевая, что эти свойства применими также и к столбцам. Свойство 2. Если одна из строк определителя состоит из нулей, то определитель равен нулю. Свойство 3. От перестановки двух строк определитель меняет свой знак. Свойство 4. Определитель, содержащий две одинаковые строки, равен нулю. Свойство 5. Если все элементы некоторой строки умножить на некое число, то сам определитель умножится на это число. Свойство 6. Определитель, содержащий две пропорциональные строки, равен нулю. Свойство 7. Если все элементы i-й строки определителя n-го порядка представлен в виде суммы двух слагаемых: aij=bj+cj, j = 1,..., n, то определитель равен сумме двух определителей, у которых все строки, кроме i-й, - такие же, как и в заданом определителе, а i-я строка в одном из слагаемых состоит из элементов bj, в другом - из элементов cj. Свойство 8. Если одна из строк определителя есть линейная комбинация его других строк, то определитеь равен нулю.. Свойство 9. Определитель не меняется, если к одной из его строк прибавляется любая линейная комбинация других строк. Теорема (о разложении определителя по строке): определитель равен сумме произведений всех элементов какой-либо строки на их алгебраические дополнения. Это означает, что определитель матрицы n×n равен Теорема о разложении определителя по строке позволяет свести вычисление определителя матрицы n×n к вычичлению n определителей матриц (n-1)×(n-1). Таким образом, вычисление определителей с порядком выше третьего сводится к разложению на сумму определителей третьего порядка. С помощью описанных выше свойств определителей можно провести предварительные преобразования матрицы, облегчающие дальнейшие вычисления. Например, если перед разложением определителя n-го порядка по какой-либо строке накопить в этой строке нули, то разложение приводит к меньшему количеству определителей порядка n-1. Ниже приводится пример, в котором сначала из первой строки вычитается вторая (при этом появляются два нуля), а затем идет разложение по первой строке (из-за двух нулей получается не четыре определителя третьего порядка, а только два): МЕТОД КРАМЕРА Метод Крамера применяется для решения систем линейных алгебраических уравнений (СЛАУ), в которых число неизвестных переменных равно числу уравнений и определитель основной матрицы отличен от нуля. В этой статье мы разберем как по методу Крамера находятся неизвестные переменные и получим формулы. После этого перейдем к примерам и подробно опишем решение систем линейных алгебраических уравнений методом Крамера.
где x1, x2, …, xn – неизвестные переменные, ai j, i = 1, 2, …, n, j = 1, 2, …, n – числовые коэффициенты, b1, b2, …, bn - свободные члены. Решением СЛАУ называется такой набор значений x1, x2, …, xn при которых все уравнения системы обращаются в тождества. В матричном виде эта система может быть записана как A ⋅ X = B, где
1. Определитель квадратной матрицы
2. Сумма произведений элементов какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующих элементов другой строки (столбца) равна нулю:
Сложим все левые части уравнения системы, сгруппировав слагаемые при неизвестных переменных x1, x2, …, xn, и приравняем эту сумму к сумме всех правых частей уравнений: Если обратиться к озвученным ранее свойствам определителя, то имеем и предыдущее равенство примет вид откуда
Складываем все уравнения системы, группируем слагаемые при неизвестных переменных x1, x2, …, xn и применяем свойства определителя: Откуда
то получаем формулы для нахождения неизвестных переменных по методу Крамера
Если система линейных алгебраических уравнений однородная, то есть
Запишем алгоритм решения систем линейных алгебраических уравнений методом Крамера. 1. Вычисляем определитель основной матрицы системы
2. Находим определители которые являются определителями матриц, полученных из матрицы А заменой k-ого столбца (k = 1, 2, …, n) на столбец свободных членов.
3. Вычисляем искомые неизвестные переменные x1, x2, …, xn по формулам
4. Выполняем проверку результатов, подставляя x1, x2, …, xn в исходную СЛАУ. Все уравнения системы должны обратиться в тождества. Можно также вычислить произведение матриц A ⋅ X, если в результате получилась матрица, равная B, то решение системы найдено верно. В противном случае в ходе решения была допущена ошибка. Не нашли, что искали? Воспользуйтесь поиском:
|