Главная | Случайная
Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Производные высших порядков. Механический смысл второй производной.




Пусть функция y=f(x) дифференцируема на некотором отрезке [a; b]. Значение производной f'(x), вообще говоря, зависит от x, т.е. производная f'(x) представляет собой тоже функцию переменной x. Пусть эта функция также имеет производную. Дифференцируя ее, получим так называемую вторую производную от функции f(x).

Производная от первой производной называется производной второго порядка или второй производной от данной функции y=f(x) и обозначается y''или f''(x). Итак, y'' = (y')'.

Например, если у = х5, то y'= 5x4, а y''= 20x4.

Аналогично, в свою очередь, производную второго порядка тоже можно дифференцировать. Производная от второй производной называется производной третьего порядка илитретьей производной и обозначается y'''или f'''(x).

Вообще, производной n-го порядка от функции f(x) называется производная (первая) от производной (n – 1)-го порядка и обозначается символом y(n) или f(n)(x): y(n) = (y(n-1))'.

Таким образом, для нахождения производной высшего порядка от данной функции последовательно находят все ее производные низших порядков.

Выясним механический смысл второй производной. (Механический смысл первой производной – скорость).

Пусть материальная точка движется прямолинейно по закону s=s(t), где s – путь, проходимый точкой за время t. Тогда скорость vэтого движения есть v= s'(t) = v(t), т.е. тоже некоторая функция времени.

В момент времени t скорость имеет значение v=v(t). Рассмотрим другой момент времени t+Δt. Ему соответствует значение скорости v1 = v(t+Δt). Следовательно, приращению времени Δt соответствует приращение скорости Δv= v1 – v = v(t + Δt) – v(t). Отношение называется средним ускорением за промежуток времени Δt.

Ускорением в данный момент времени t называется предел среднего ускорения при Δt→0:

.

Таким образом, ускорение прямолинейного движения точки есть производная скорости по времени. Но как мы уже видели, скорость есть производная пути s по времениt: v = s'. Учитывая это, имеем:

a = v'(t) = (s')' = s''(t),

т.е. ускорение прямолинейного движения точки равно 2-й производной пути по времени

a = S''(t).




Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2019 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных