ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Тема 7.Аналитическая геометрия и линейная алгебра.N-мерное арифметическое пространство — Rn. Геометрический смысл пространств R2 и R3. Векторы. Длина вектора. Линейные операции над векторами. Скалярное произведение векторов. Линейно зависимые и линейно не зависимые системы векторов. Геометрический смысл линейной зависимости векторов. Базис и ранг системы векторов. Ортогональный и ортонормированный базисы. Представление вектора в координатной форме. Действия с векторами, заданными в координатной форме. Угол между векторами. Разложение вектора по произвольному базису.
Прямая на плоскости. Общее уравнение прямой, уравнение прямой с угловым коэффициентом. Угол между прямыми, условия параллельности и перпендикулярности прямых. Расстояние от точки до прямой. Понятие о кривых второго порядка: окружность, эллипс, гипербола, парабола. Прямая и плоскость в пространстве R3. Расстояние от точки до плоскости. Векторное, параметрическое, каноническое уравнения прямой в R3.
Понятие Определителя n-го порядка. Миноры, алгебраические дополнения. Способы вычисления и свойства определителей. Матрицы и действия над ними. Транспонированная матрица. Обратная матрица и способы ее нахождения. Ранг матрицы. Линейные уравнения с n неизвестными. Условия совместности и определенности СЛУ. Матричная запись системы линейных уравнений. Решение системы линейных уравнений с помощью обратной матрицы. Формулы Крамера. Метод Гаусса. Однородные системы линейных уравнений. Общее решение неоднородной системы линейных уравнений. Теорема Кронекера – Капелли. Допустимое, базисное, опорное решение системы линейных уравнений.
Системы линейных неравенств с n неизвестными, их геометрический смысл. Геометрический метод решения системы линейных неравенств с двумя переменными. Выпуклые множества. Основная задача линейного программирования. Не нашли, что искали? Воспользуйтесь поиском:
|