Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Образец выполнения задания № 3. Задача.Дано уравнение линии в полярной системе координат




Задача. Дано уравнение линии в полярной системе координат. Надо: 1) определить точки, лежащие на линии, давая значения через промежуток, равный , начиная от в промежутке ; 2) построить линию, соединив полученные точки с помощью лекала или от руки; 3) найти уравнение этой линии в прямоугольной декартовой системе координат (положительная полуось абсцисс берется совпадающей с полярной осью, полюс – с началом прямоугольной декартовой системы координат; обе системы координат берутся правыми); 4) определить вид кривой.

Решение. 1) Для построения кривой, заданной уравнением , придаем значения от до через промежуток (с шагом) и заносим полученные значения в таблицу:

 

0
2,3 2,4 2,6 2,9 3,5 4,3 5,4 6,5 7 6,5 5,7 4,3 3,5 2,9 2,6 2,4 2,3

 

2) В полярной системе координат соединяем последовательно точки с координатами , получаем кривую (рис. 4).

3) Для получения уравнения линии в прямоугольной системе координат подставим значения полярного радиуса и угла , связывающие полярную и прямоугольную системы координат.

 

 

 


Рис. 4

, , .

Тогда .

- уравнение эллипса с центром в точке и полуосями

Напомним, что полярный радиус точки может принимать только неотрицательные значения.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных