Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Для решения нелинейного уравнения по методу хорд справедлива Теорема 3.




Теорема 3
Пусть функция y = f(x) на отрезке [a,b] удовлетворяет условиям теоремы 1, т.е. уравнение (1.1) имеет на этом отрезке единственный корень. Если функция y=f(x) имеет 2-ую производную, сохраняющую знак на этом отрезке, то исходя из начального приближения х0 , удовлетворяющего условию: f(x0) f ’’ (x0)<0, (1.8) корень x* уравнения 1.1) с заданной точностью ε вычисляется по формуле (1.9) или (1.10)

Контрольные вопросы к практическому заданию 2.

1. Какое уравнение называется нелинейным. Пример нелинейного уравнения.

2. Что является решением нелинейного уравнения.

3. Геометрическая интерпретация решения нелинейного уравнения.

4. Методы решения нелинейного уравнения (прямые и итерационные), в чем разница.

5. Два этапа решения нелинейного уравнения. Какие задачи ставятся на первом и втором этапах

6. Построение итерационной последовательности. Понятие сходимости итерационной последовательности. Нахождение приближенного значения корня нелинейного уравнения с заданной точностью ε.

7. Критерии окончания итерационного процесса. Геометрический смысл критериев.

8. Метод половинного деления. Суть метода (см. вопросы 6,7).

9. Метод Ньютона (касательных). Как выбирается нулевое приближение (нулевая итерация). Суть метода (см. вопросы 6, 7).

10. Метод хорд. Как выбирается нулевое приближение (нулевая итерация). Суть метода (см. вопросы 6, 7).

 


 


Приложение 1.1.

 

Пермский национальный исследовательский политехнический университет

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных