ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Влияниехимического состава сырья на показатели риформингана катализаторе КР-106Давление 1,5 МПа Нефти: I - киркукская; II - ромашкинская; III - ухтинская; IV - самотлорская; V - нижневартовская; VI - смесь шаимской и грозненской
таточно интенсивно экзотермические реакции гидрокрекинга парафинов. Поэтому в первом реакторе имеет место наибольший (30-50 °С), а в последнем наименьший перепад (градиент) температур между входом в реактор и выходом из него. Высокий температурный градиент в головных реакторах риформинга можно понизить, если ограничить глубину протекающих в них реакций ароматизации. Это может быть достигнуто при заданном температурном режиме только уменьшением времени контакта сырья с катализатором, то есть объема катализатора в них. В этой связи на промышлен- ных установках риформинга головной реактор имеет наименьший объем катализатора, а хвостовой - наибольший. Для трехреакторно-го блока распределение объема катализатора по ступеням составляет от 1:2:4 до 1:3:7 (в зависимости от химического состава сырья и целевого назначения процесса), а для четырехреакторного оно может быть, например, 1:1, 5:2, 5:5. Поскольку составляющие суммарный процесс реакции риформинга имеют неодинаковые значения энергии активации - наибольшее для реакций гидрокрекинга (117 - 220 кДж/моль) и меньшее для реакций ароматизации (92-158 кДж/моль), то при повышении температуры в большей степени ускоряются реакции гидрокрекинга, чем реакции ароматизации. Поэтому обычно поддерживают повышающийся температурный режим в каскаде реакторов, что позволяет уменьшить роль реакций гидрокрекинга в головных реакторах, тем самым повысить селективность процесса и увеличить выход рифор-мата при заданном его качестве. Температура на входе в реакторы риформинга устанавливается в начале реакционного цикла на уровне, обеспечивающем заданное качество риформата - октановое число или концентрацию ароматических углеводородов. Обычно начальная температура лежит в пределах 480-500 °С и лишь при работе в жестких условиях составляет 510 °С. По мере закоксовывания и потери активности катализатора температуру на входе в реакторы постепенно повышают, поддерживая стабильное качество катализата, причем среднее значение скорости подъема температуры за межрегенерационный цикл составляет 0,5 - 2,0 °С в месяц. Максимальная температура нагрева сырья на входе в последний реактор со стационарным слоем катализатора достигает до 535 °С, а в реакторы установок с непрерывной регенерацией - до 543 °С. Давление - основной, наряду с температурой, регулируемый параметр, оказывающий существенное влияние на выход и качество продуктов риформинга. При прочих идентичных параметрах с понижением парциального давления водорода возрастает как термодинамически, так и кинетически возможная глубина ароматизации сырья и, что особенно важно, повышается при этом селективность превращений парафиновых углеводородов, поскольку снижение давления благоприятствует протеканию реакций ароматизации и тормозит реакции гидрокрекинга. Таблица 10.7 Влияние давления на выход бензина с октановым числом 95 (И.М.) из фракции 85-180 °С гидроочищенного бензина (V= 1,5 ч-1, катализатор КР-104)
В табл. 10.7 приведены данные по влиянию давления на выход целевых продуктов при риформинге гидроочищенной фракции бензина 85-180 °С на катализаторе КР-104. Однако при снижении давления процесса увеличивается скорость дезактивации (Удез) катализатора за счет его закоксовыва-ния (Удез определяется как скорость подъема температуры нагрева сырья на входе в реакторы, обеспечивающая постоянство качества катализата). Как видно из рис. 10.5, скорость дезактивации катализатора приблизительно обратно пропорциональна давлению (1/Р, МПа"1).
Из рис. 10.5 следует вывод о том, что при давлениях 3-4 МПа коксообразование подавляется в такой степени, что установки ри-форминга со стационарным слоем катализатора могут работать без его регенерации практически более 1 года. Применение би- и полиметаллических катализаторов позволяет проведение процесса при 1,5-2,0 МПа без регенерации катализатора в течение 1 года.
Кратность циркуляции во-дородсодержашего газа. Этот параметр определяется как отношение объема циркулирующего водородсодержащего газа (ВСГ), приведенного к нор- мальным условиям (0,4; 0,1 МПа), к объему сырья, проходящего через реакторы в единицу времени (м3/м3). Учитывая, что в циркулирующем ВСГ концентрация водорода изменяется в широких пределах - от 65 до 90 % об., а молекулярная масса сырья зависит от фракционного и химического составов, предпочтительнее пользоваться мольным отношением водородхырье (иногда моль водорода на моль углерода сырья). Связь между мольным отношением водород: сырье (М) и кратностью циркуляции ВСГ (Ккг) выражается следующей формулой: М„ = 4,4610-4КвсгМс/р, где С„2 - концентрация (% моль.) водорода в ВСГ; Мс и р - соответственно средняя мольная масса (кг/моль) и плотность (кг/м3) сырья (Квсг = 20 Мот). С увеличением мольного отношения водородхырье снижается скорость дезактивации катализаторов риформинга (рис. 10.6) и, следовательно, удлиняется межрегенерационный цикл. Однако увеличение М (то есть Квсг) связано со значительными энергозатратами, ростом от гидравлического сопротивления и объема аппаратов и трубопроводов. Выбор этого параметра производится с учетом стабильности катализатора, качеств сырья и продуктов, жесткости процесса и заданной продолжительности межрегенерационного цикла.
При использовании полиметаллических катализаторов на установках со стационарным катализатором мольное отношение водород: сырье, равное 5-6, обеспечивает длительность межрегенерационного цикла до 12 месяцев. На установках с непрерывной регенерацией катализатора Мот поддерживается на уровне 4-5 и при интенсификации блока регенерации катализатора может быть снижено до 3. С наибольшей скоростью дезактивация катализатора происходит обычно в последнем реакторе вслед- ствие высокого содержания в реакционной среде ароматических углеводородов и более жесткого режима риформинга. Чтобы выровнять закоксовывание катализатора по реакторам, на некоторых моделях установок риформинга (например, магнаформинге) в последний реактор подают дополнительно часть ВСГ, в результате отношение водородхырье составляет на входе в первый реактор (3 - 5): 1, а в последний - (9-12): 1. Объемная скорость подачи сырья оказывает влияние на процесс риформинга как параметр, обратный времени контакта сырья с катализатором. В соответствии с закономерностями химической кинетики (см. § 7.2.2) с увеличением объемной скорости (то есть уменьшением времени контакта) сырья снижается глубина реакций ароматизации и более значительно реакций гидрокрекинга парафинов. Следовательно, при этом понизится выход продуктов гидрокрекинга - легких углеводородных газов и кокса на катализаторе. Ароматические углеводороды будут образовываться преимущественно за счет реакций дегидрирования нафтенов, протекающих значительно быстрее других. В результате повышение объемной скорости подачи сырья приводит к: - увеличению выхода риформата, но с пониженным октановым - снижению выхода ВСГ с более высокой концентрацией водорода; - повышению селективности процесса и удлинению продолжительности межрегенерационного цикла. С другой стороны, при снижении объемной скорости сырья сим-батно снижается производительность установок риформинга по сырью. Оптимальное значение объемной скорости устанавливают с учетом качеств сырья и риформинга, жесткости процесса и стабильности катализатора. Обычно объемная скорость в процессах рифор-мирования бензинов составляет 1,5-2,0 ч~'. Содержание хлора в катализаторе. Стабильная активность ка 18 — 1908 Потери хлора катализатором при окислительной его регенерации восполняются в процессе оксихлорирования подачей хлора за 2-10 ч при 500-520 °С в количестве 0,5-1,5 % от массы катализатора. Потери хлора при пусковых операциях (сушка и восстановление катализатора, начало сырьевого цикла) восполняют за несколько часов подачей 0,1-0,3 % хлора от массы катализатора в поток сырья или ВСГ при температуре 350 - 450 °С. Для поддержания оптимальной концентрации хлора в катализаторе в сырьевом цикле хлор может подаваться периодически или непрерывно с дозировкой 1 - 5 мг/ кг сырья (в виде хлорорганических соединений, например, СС14, С2Н4С12). 10.2.4. Промышленные установки каталитического риформинга Первая промышленная установка каталитического риформинга на алюмохромомолибденовом катализаторе (гидроформинг, проводимый под давлением водорода 4 - 4,5 МПа и температуре = 540°С) была пущена в 1940 г. и получила широкое развитие на НПЗ США и Германии. Основным целевым назначением гидроформинга являлось получение высокооктановых компонентов (с ОЧИМ 80 пунктов) авто-и авиабензинов, а в годы II мировой войны - производство толуола -сырья для получения тринитротолуола. В 1949 г. была введена в эксплуатацию разработанная фирмой «ЮОП» первая промышленная установка каталитического риформинга с монометаллическим алюмоплатиновым фторированным катализатором - платформинг. В 60-70-е гг. в результате непрерывного совершенствования технологии и катализаторов (переход к хлорированным алюмоплатиновым, разработка биметаллических платино-рениевых, затем полиметаллических высокоактивных, селективных и стабильных катализаторов), оптимизации параметров и ужесточения режима (понижение рабочих давлений и повышения температуры в реакторах) появились и внедрялись высокопроизводительные и более эффективные процессы платформинга различных поколений со стационарным слоем катализатора. Сравнение нескольких поколений зарубежных установок каталитического риформинга со стационарным слоем катализатора приведено в табл. 10.8. Таблица 10.8 Режим работы и общие хаарактеристики промышленных установок каталитического риформинга со стационарным слоем
Важным этапом в развитии и интенсификации процессов риформинга являлись разработка фирмой «ЮОП» и внедрение в 1971 г. наиболее передовой технологии каталитического риформинга с непрерывной регенерацией катализатора (КР НРК). В отечественной нефтепереработке установки платформинга* получили широкое развитие с 1962 г. Характеристика отечественных промышленных установок КР, работающих по бензиновому варианту, приведена в табл. 10.9 (ЛФ-35-11/1000 - импортная установка КР НРК, эксплуатируется * По разработкам ВНИИНефтехим и проектам Ленгипронефтехим. 18* на АО «Уфанефтехим» в составе комплекса по производсту ароматических углеводородов. В настоящее время на Ново-Уфимском НПЗ проведена реконструкция платформинга со стационарным слоем катализатора с переводом последнего, наиболее «коксуемого» реактора на режим непрерывной регенерации). 10.2.5. Установки каталитического риформинга со стационарным слоем катализатора Установки этого типа в настоящее время получили наибольшее распространение среди процессов каталитического риформинга бензинов. Они рассчитаны на непрерывную работу без регенерации в течение 1 года и более. Окислительная регенерация катализатора производится одновременно во всех реакторах. Общая длительность простоев установок со стационарным слоем катализатора составляет 20 - 40 суток в год, включая цикл регенерации и ремонт оборудования. Сырье установок подвергается предварительной глубокой гидроочистке от сернистых, азотистых и других соединений, а в случае переработки бензинов вторичных процессов - гидрированию непредельных углеводородов. Установки каталитического риформинга всех типов включают следующие блоки: гидроочистки сырья, очистки водородсодержащего газа, реакторный блок, сепарации газа и стабилизации катализата.
Принципиальная технологическая схема установки платформинга (без блока гидроочистки сырья) со стационарным слоем катализатора приведена на рис. 10.7. Гидроочищенное и осушенное сырье смешивается с циркулирующим ВСГ, подогревается в теплообменнике, затем в секции печи П-1 и поступает в реактор первой ступени Р-1. На установке имеется 3-4 адиабатических реактора и соответствующее число секций многокамерной печи П-1 для межступенчатого подогрева реакционной смеси. На выходе из последнего реактора смесь охлаждается в теплообменнике и холодильнике до 20 -40 и поступает в сепаратор высокого давления С-1 для отделения циркулирующего ВСГ от катализата. Часть ВСГ после осушки цеолитами в адсорбере Р-4 поступает на прием циркуляционного компрессора, а избыток выводится на блок предварительной гидроочистки бензина и передается другим потребителям водорода. Нестабильный катализат из С-1 поступает в сепаратор низкого давления С-2, где от него отделяются легкие углеводороды. Выделившиеся в сепараторе С-2 газовая и жидкая фазы поступают во фракционирующий абсорбер К-1. Абсорбентом служит стабильный катализат (бензин). Низ абсорбера подогревается горячей струей через печь П-2. В абсорбере при давлении 1,4 МПа и температуре внизу 165 °С и вверху 40 °С отделяется сухой газ. Нестабильный катализат, выводимый с низа К-1, после подогрева в теплообменнике поступает в колонну стабилизации К-2. Тепло в низ К-2 подводится циркуляцией и подогревом в печи П-2 части стабильного конденсата. Головная фракция стабилизации после конденсации и охлаждения поступает в приемник С-3, откуда частично возвращается в К-2 на орошение, а избыток выводится с установки. Часть стабильного катализата после охлаждения в теплообменнике подается во фракционирующий абсорбер К-1, а балансовый его избыток выводится с установки. Режим работы установок и качество катализата приведены в табл. 10.9. Основными реакционными аппаратами установок (или секций) каталитического риформинга с периодической регенерацией катализатора являются адиабатические реакторы шахтного типа со стационарным слоем катализатора. На установках раннего поколения применялись реакторы аксиального типа с нисходящим или восходящим потоком реакционной смеси. На современных высокопроизводительных установках применяются реакторы только с радиальным движением потоков преимущественно от периферии к центру*. Не нашли, что искали? Воспользуйтесь поиском:
|