ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Теоретические основы. Одно из основных понятий современной математики — множествоОдно из основных понятий современной математики — множество. Это понятие обычно принимается за первичное и поэтому не определяется через другие. Когда в математике говорят о множестве (чисел, точек, функций и т. д.), то объединяют эти объекты в одно целое — множество, состоящее из этих объектов (чисел, точек, функций и т. д.). Основатель теории множеств, немецкий математик Георг Кантор (1845–1918) выразил эту мысль следующим образом: “Множество есть многое, мыслимое как единое, целое”. Множество — это совокупность объектов, объединённых между собой по какому-либо признаку. Слово “множество” в обычном смысле всегда связывается с большим числом предметов. Например, мы говорим, что в лесу множество деревьев, но если перед домом два дерева, в обычной речи не говорят, что перед домом “множество деревьев”. Математическое же понятие множества не связывается обязательно с большим числом предметов. В математике удобно рассматривать и “множества”, содержащие 3; 2 или 1 предмет и даже “множество”, не содержащее ни одного предмета (пустое множество). Например, мы говорим о множестве решений уравнения, до того как узнаем, сколько оно имеет решений (множество вещественных решений уравнения х2+1 = 0 — пустое множество). Произвольные множества обозначают большими латинскими буквами А, В, С, … Пустое множество, т.е. множество, которое не имеет элементов, обозначается символом . О предметах, составляющих множество, говорят, что они принадлежат этому множеству, или являются его элементами. Элементы множества обозначают малыми латинскими буквами a, b, c, … или одной какой-нибудь буквой с индексом, например а1, а2, …,аn. Предложение “предмет а принадлежит множеству А”, или “предмет а — элемент множества А”, обозначают символом а А. Способы задания множеств: 1) Множество может быть задано непосредственным перечислением всех его элементов (в произвольном порядке). В таком случае названия всех элементов множества записываются в строчку, отделяются между собой запятыми и заключаются в фигурные скобки. Например: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}— множество цифр десятичной системы счисления, Необходимо различать объекты, обозначаемые символами a и {a}. Символом a означается предмет, символом {a} — множество, состоящее из одного элемента а (единичное множество). Перечислением всех элементов можно задать лишь конечное множество. Такие множества, как, например, множество всех натуральных (N) или всех целых чисел (Z), нельзя задать таким способом, т.к. мы не можем перечислить все N и все Z — таких чисел бесконечное множество. 2) Имеется другой, универсальный, способ задания множества в том смысле, что этим способом может быть задано не только конечное, но и бесконечное множество. Множество может быть задано указанием характеристического свойства, т. е. такого свойства, которым обладают все элементы этого множества и не обладает ни один предмет, не являющийся его элементом. Например: а) А = { х | sin x = 0}, б) А = {0, 1, 2, 3, 4}— множество всевозможных остатков от деления любого натурального числа на 5. Не нашли, что искали? Воспользуйтесь поиском:
|