Уравнение плоскости по трем точкам. Взаимное расположение плоскостей в пространстве
В векторном виде

В координатах




Взаимное расположение плоскостей в пространстве
Пусть
и 
– общие уравнения двух плоскостей. Тогда:
1) если , то плоскости совпадают;
2) если , то плоскости параллельны;
3) если или , то плоскости пересекаются и системауравнений
(6)
является уравнениями прямой пересечения данных плоскостей.
3.3

· Составить канонические уравнения прямой по точке и направляющему вектору
Решение: Канонические уравнения прямой составим по формуле:
Ответ:
| · В ряде задач требуется найти какую-нибудь другую точку , принадлежащую данной прямой. Как это сделать?
Берём полученные уравнения и мысленно «отщипываем», например, левый кусочек: . Теперь этот кусочек приравниваем к любому числу (помним, что ноль уже был), например, к единице: . Так как , то и два других «куска» тоже должны быть равны единице. По сути, нужно решить систему:
| 
Составить параметрические уравнения следующих прямых: 
Решение: Прямые заданы каноническими уравнениями и на первом этапе следует найти какую-нибудь точку, принадлежащую прямой, и её направляющий вектор.
а) Из уравнений снимаем точку и направляющий вектор: . Точку можно выбрать и другую (как это сделать – рассказано выше), но лучше взять самую очевидную. Кстати, во избежание ошибок, всегда подставляйте её координаты в уравнения.
Составим параметрические уравнения данной прямой: 
Удобство параметрических уравнений состоит в том, что с их помощью очень легко находить другие точки прямой. Например, найдём точку , координаты которой, скажем, соответствуют значению параметра : 
Таким образом: 
б) Рассмотрим канонические уравнения . Выбор точки здесь несложен, но коварен: (будьте внимательны, не перепутайте координаты!!!). Как вытащить направляющий вектор? Можно порассуждать, чему параллельна данная прямая, а можно использовать простой формальный приём: в пропорции находятся «игрек» и «зет», поэтому запишем направляющий вектор , а на оставшееся место поставим ноль: .
Составим параметрические уравнения прямой: 
в) Перепишем уравнения в виде , то есть «зет» может быть любым. А если любым, то пусть, например, . Таким образом, точка принадлежит данной прямой. Для нахождения направляющего вектора используем следующий формальный приём: в исходных уравнениях находятся «икс» и «игрек», и в направляющем векторе на данных местах записываем нули: . На оставшееся место ставим единицу: . Вместо единицы подойдёт любое число, кроме нуля.
Запишем параметрические уравнения прямой: 
Не нашли, что искали? Воспользуйтесь поиском:
|