ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Уравнение плоскости по трем точкам. Взаимное расположение плоскостей в пространстве
В векторном виде В координатах
Взаимное расположение плоскостей в пространстве
и – общие уравнения двух плоскостей. Тогда: 1) если , то плоскости совпадают; 2) если , то плоскости параллельны; 3) если или , то плоскости пересекаются и системауравнений (6) является уравнениями прямой пересечения данных плоскостей.
3.3
Составить параметрические уравнения следующих прямых: Решение: Прямые заданы каноническими уравнениями и на первом этапе следует найти какую-нибудь точку, принадлежащую прямой, и её направляющий вектор. а) Из уравнений снимаем точку и направляющий вектор: . Точку можно выбрать и другую (как это сделать – рассказано выше), но лучше взять самую очевидную. Кстати, во избежание ошибок, всегда подставляйте её координаты в уравнения. Составим параметрические уравнения данной прямой: Удобство параметрических уравнений состоит в том, что с их помощью очень легко находить другие точки прямой. Например, найдём точку , координаты которой, скажем, соответствуют значению параметра : Таким образом: б) Рассмотрим канонические уравнения . Выбор точки здесь несложен, но коварен: (будьте внимательны, не перепутайте координаты!!!). Как вытащить направляющий вектор? Можно порассуждать, чему параллельна данная прямая, а можно использовать простой формальный приём: в пропорции находятся «игрек» и «зет», поэтому запишем направляющий вектор , а на оставшееся место поставим ноль: . Составим параметрические уравнения прямой: в) Перепишем уравнения в виде , то есть «зет» может быть любым. А если любым, то пусть, например, . Таким образом, точка принадлежит данной прямой. Для нахождения направляющего вектора используем следующий формальный приём: в исходных уравнениях находятся «икс» и «игрек», и в направляющем векторе на данных местах записываем нули: . На оставшееся место ставим единицу: . Вместо единицы подойдёт любое число, кроме нуля. Запишем параметрические уравнения прямой:
Не нашли, что искали? Воспользуйтесь поиском:
|