Главная | Случайная
Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Клетка циклінің кезеңдерінің сызба нұсқасын салыңыз.




 

Клетканың өзінің пайда болуымен және оның жас клеткаларға бөлінуінің арасындағы кезең-кезеңімен жүретін оқиғаладың жиынтығын клеткалық цикл деп атаймыз. Клеткалық цикл(клеточный цикл); (лат. cyclus cellularins cyclus — айналым, cellula — жасуша) — жетілген клеткалардың тіршілік мерзімі. Грекше "цикл"— дөңгелек, шеңбер деген мағынаны білдіреді. Клеткалық цикл — интерфазадан және митоздан тұрады. Интерфаза екі митоздың аралығындағы жасушаның бөлінуге дайындық кезеңі. Интерфаза барысында клетка ішінде жүретін түрлі процесстер – клетканың өсуі, дифференциялануы байқалады. Сонымен қатар клетканың репродукциясына, митозға дайындауға байланысты процестер жүреді. Зат алмасу сипатына сәйкес интерфаза (интеркинез) өз кезеңінде үш кезеңге бөлінеді: 1. постмитоздық (пресинтездік) оны латынның G1 әрпімен белгілейді, 2. Синтездік –S әрпімен белгіленетін ДНҚ-ның синтезделу кезеңі.3. постсинтездік немесе постмитоздық кезең (G2). Клетка тіршілігініің барлық кезеңінде оның репродукциялануына әзірлік жүреді. Клеткалық циклдің әр кезеңдері бір-бірінен клеткалардағы белоктың, ДНҚ ның , РНҚ ның жалпы мөлшерімен және олардың синетзінің жеделдігімен ажырайды. Постмитоздық кезең митоздық бөлінуден кейін басталады. Осы кезде цитоплазманың өсуі байқалады жіне ДНҚ ның синтезіне әзірлік жүреді. Электрондық микроскопияның деректері бойынша центриольдар екі еселенеді. Клетканың бөлінуге дайындығындағы маңызды кезең – синитездік кезең. Мұнда ДНҚ синтезделедіжәне хромосомалар екі еселенеді. S кезеңінің ұзаққа созылуы ДНҚ репликациясының жылдамдығына байланысты. S кезеңі өтуі үшін РНҚ белоктардың синтезі қажет. Клеткада ДНҚ ның синтезімен қатар цитоплазмада гистондардың синтезі қарқынды жүреді және олар ядроларға ауысады. Премитоздық кезеңде G2 клеткада энегрия жиналады және митоздық аппаратты түзеуге қатысатын ерекше белоктар синтезеделеді. Энегрия қорының жиналуы клеткалардың түрлі типтерінде әртүрлі жолмен қамтамасыз етіледі. Бір клеткаларда (мыс теңіз кірпісінің жұмытрқаларында, пияз тамырларының клеткаларында, тышқанның эпидермисинде) митлзға қажет энергия трикарбон циклындағы глюкозаның аэробты тотығуынан пайда болады, ал басқа келткаларда энергия гликолиз жолымен бөлінеді. Осыан кейін клетканың митоздық бөлінуі басталады. басталады Бұл процесс негізгі екі кезеңен тұрады: ядроньң бөлні — митоз (кариокинез) деп, цитоплазманың,бөлінуі— цитокинез. Клетка өзінің тіршілік циклінде кезектесіп келетін алты стадияны басынан өткізеді: интерфаза, профаза, прометафаза, метафаза, анафаза және телефаза.

Интерфазада клетканың, ерекшелігіне тән және клетканың бөлінуіне қажетті заттар түзіледі. Бұл кезде ядродан ұсақ, жіпшелерден — хромосомалардан құралған тор құрылымы жақсы көрінеді. Профазада — митоздьқ 6іріншi кезеңінде хромосомолар спиральданады да, екіден қосарланган жіп сияқты болып жарық, микроскопынан көрінеді Интерфаза кезінде хромосоманың қосарлануы немесе оның репродукциясы болатынын байқаймыз. Бұл кезде бастапқы хромосомалардын, әркайсысы дәл өзі сиқты жаңа хромосома түзеді: Сіңлілі хроматидтер деп аталатын бұл жарты бөлік профаза кезінде бөлініп кетпейді, оларды центромера (кинетохором) деп аталатын ортақ бөлік біріктіріп ұcтап тұрады. Профазада хромосомалар ары қарай ұзынынан спиральдана түседі, соньң нәтижесінде олар қысқарады және жуандайды. Сол сияқлы профазада хромосомалар ядроның бүкіл келемше таралатынын атап көрсету маңызды. Жануарлар клеткасында интерфазанын, бас кезінде немесе тіпті телефазалық, бөлінудің, кезінде центриолдар қосарланады, бұдан кейін профазада жас центриолдар ажырап, клетканьң полюсіне қарай бөліне бастайды. Центриолдар арасында бір буда бөліну ұршығының жіңішке жіпшелері пайда болады, осы жиынтық ахроматин аппараты деп аталады. Бұлшық ет клеткалары құрамындағыдай, ұршық жіптері құрамында актин белогы болады, ол белок қозғалыстың түрлі жағдайында жиырылуды қамтамасыз етеді. Профазаның аяқталуының негізгі белгісі — ядрошықтар мен ядро қабықшасы жоғалып кетеді, сонын, нәтижесінде хромосо-малар цитоплазма мен нуклеоплазманың жалпы массасының ішінде орналасады. Прометафаза клеткадағы хромосомалардың экватор жазықтығына қарай қозғалуымен сипатталады. Бұл қозғалыс пен хромосомалардың экватор ұршығында таралуы метакинез деп аталады. Осы жазықтыққа орналасқан хромосомалар экваторлық немесе метафазалық пластинка құрайды. Әрбір хромосома экваторлық жазықтыққа оның центрлері дәл келетіндей болып орналасады, ал хромосомалардың қалған барлық денесі одан тыс жатуы мүмкін. Экваторлық пластинканы клетканың бөлінуі полюсінен қараған кез-де барлық хромосомалар жақсы көрінеді, оларды санауға және формасын байқап көруге болады. Цитоплазманың қалған массасына қарағанда ұршық жіптері тығыз консистенциялана түседі. Олар хромосомаларға мынадай жолмен, яғни центромераға «жіп екі полюстен келіп жалғасады. Митоздың келесі фазасы анафаза деп аталады, бүл кезде центромералар және сіңлілі хроматидтер (оларды енді хромосомалар деп атауға болады) бөлінеді де, полюстерге таралады. Мұнда ең алдымен хромосоманың центромералық учаскелері бі-рінен-бірі алшақтайды, бүдан кейін алдымен центромерлер, сонан соң хромосомалардың өздері полюстерге ажырайды. Анафазада хромосоманың ажырап бөлінуі бір мезгілде басталады да, өте тез аяқталады. Хромосомалар ажырап барғаннан кейін, екі полюстегі олардың саны бірдей болады және әр бөліктегі хромосом саны бастапкы клеткадағы хромосома санына тең болады. Ядро бәлінуінің осығідай ерекшелігіне байланысты клетка үрпақтарында хромосома саны және олардың сапалық құрамы үнемі түрақты болады. Телефазада жас хромосомалар деспиральданады. дараланып көрінуі жойылады. Ядро қабықшасы пайда болады. Бұдан кейін ядрошық (немесе ядрошықтар) қалпына келеді, оның саны бастапқы ядродағыдай болады. Ядро енді профазада болған өзгеріспен салыстырғанда кері реконструкцияланады.

53. Белок синтезіндегі ядро мен цитоплазмалық органоидтарының рөлін сипаттап, түсіндіріп беріңіз.Белок синтезі - өте күрделі процесс.Белок синтезінің негізінде жатқан молекулалық процестер өте күрделі. Олардың көпшілігі жазылып суреттелгенмен толық мазмұнын, айталық транскрипция, репарация және ДНҚ-ның репликациясы тәрізді түсіндіру әзір мүмкін емес. Мысалы, белок синтезінде РНҚ молекулаларының кез келген бір класы емес, үш класы (иРНҚ, тРНҚ және рРНҚ) қатысады, бірақ неге бұлай болатыны айқын түсінікті емес. Сондықтан белок синтезінің егжей-тегжей негізінен, әліде белгілі бір теорияда жалпыланбаған жалаң факты ретінде қабылдауымыз керек. Белок синтезінің процесінде басты агент ролін тРНҚ молекулалары атқарады. Оларға полимеризацияланбай тұрып, яғни полипептидтерге бірікпей тұрып, амин қышқылдары жалғасады. тРНҚ-ның молекуласына карбоксилдік ұшымен қосыла отырып, амин қышқылдары белсенді түрде энергияға бай түрге айнала ды, ол өз бетімен пептидтік байланыс түзе алады, сөйтіп полипептидтерді синтездеуге мүмкіндік туады. Бұл белсенділік процесі - белок синтезіне қажетті кезең, себебі бос амин қышқылдары полипептидтік тізбекке тікелей жалғаса алмайды. Өсіп келе жатқан полипептидтік тізбекке дәл сол амин қышқылы қосылуы керектігі амин қышқылына байланысты емес, оны тіркеп алған тРНҚ молекуласына тәуелді. Мұны бір ерекше әсем тәжірибенің көмегімен анықтауға мүмкін болды, онда ерекше тРНҚ-ға жалғанған амин қышқылын химиялық әдіспен басқа амин қышқылына (цистеинді аланинге) айналдырған. Кейін мұндай будан молекулалар клеткасыз жүйеде жұмыс істегенде, дұрыс емес амин қышқылы белок тізбегіне сол тРНҚ "қызмет" жасағанда үнемі қосылып отырған.Кодты табысты шешу үшін қалыпты жағдайда белсендірілген амин қышқылы мен оған сәйкес тРНҚ молекуласының әрекеттесу механизмнің дәлдігіне байланысты. иРНҚ-ны сәтті шешу үшін кодондағы негіздермен тРНҚ молекуласындағы антикодондар дәл жұптасуы қажет.Белок синтезінің реакциялары рибосомада жүреді.Белок синтезінің реакциялары жүру үшін күрделі катализдік ақпарат кажет. Өсіп келе жатқан полипептидтік тізбек иРНҚ молекуласына жақындасуы керек, ол иРНҚ-дағы келесі кодондар тРНҚ-ның молекуласымен қосылуы үшін қажет. Бұл дегеніміз, полипептидтің өсіп келе жатқан ұшы, әрбір жаңа амин қышқылы қосылған сайын, иРНҚ-ның тізбегінің бойымен дәл үш нуклеотидке жылжиды деген сөз. Белок синтезінің осы және басқа кезеңдері синтездің белок молекуласынан және РНҚ-дан құралған ірі мультиферменттік комплекс рибосомада жүретініне байланысты.Құрылымы және қызметі жағынан эукариоттар мен прокариоттардың рибосомалары өте ұқсас. Олардың әрқайсысы - үлкен және кіші екі суббірліктен тұрады. Эукариоттық рибосомаларда, массасының жартысына жуығы РНҚ-дан (рРНҚ) тұрады; кіші суббірлігі рибосомалық РНҚ-ның (рРНҚ) бір молекуласы мөлшермен 33 әртүрлі рибосомалық белоктармен, ал үлкені 40-тан аса әртүрлі рибосомалық белоктармен, рРНҚ-ның үш молекуласымен байланысқан. Прокариоттық рибосомалар кішірек, және компоненттерінің (құрамы) саны аз болады. Екі типтегі рибосомаларда да өсіп келе жатқан полипептидтік тізбекті және иРНҚ молекуласын ұстап тұратын өзекшелер бар. Өзекшелердің біріншісінің ұзындығына 30 амин қышқылы, ал екіншісіне РНҚ-ның 35 жуық нуклеотидтері сияды. Рибосома адымдап иРНҚ-ның тізбегімен жылжиды.Рибосомада тРНҚ молекуласын байланыстыратын екі әртүрлі учаске бар. Біреуі тРНҚ молекуласын, өсіп келе жатқан полипептидтік тізбек бойында, сондықтан оны пептидил-тРНҚ байланыстырушы учаскесі немесе Р-учаскесі деп атайды. Екіншісі амин қышқылымен жүктелген, жаңадан келген тРНҚ молекуласын ұстау үшін жұмыс жасайды; осы аминоацил-тРНҚ-ны байланыстырушы учаскесі немесе А-учаскесі деп атайды. Екі учаскеге де тРНҚ молекуласы қатты бекуі, тек оның антикодоны иРНҚ-дағы оған комплементарлы кодонмен жұптасқанда мүмкін болады. А- және Р учаскелері бір біріне өте жақын орналасқан, сондықтан олармен байланықан екі тРНҚ молекуласы иРНҚ молекуласында екі көршілес кодондармен жұптасады. Рибосомада полипептидтік тізбектің өсу (элонгация) процесін үш түрлі жеке сатылардан тұратын цикл ретінде қарауға болады. Бірінші сатыда аминоацил-тРНҚ молекуласы рибосоманың бос А-учаскесімен байланысады, ол бос емес Р-учаскесіне жанасқан; байланыс антикодонның нуклеотидтерінің А-учаскесінде орналасқан иРНҚ-ның үш нуклеотидімен жұптасуы арқылы жүреді. Екінші сатыда полипептидтік тізбектің карбоксилдік ұшы Р-учаскесінде тРНҚ-дан бөлініп, А-учаскесіндегі тРНҚ молекуласына қосылған амин қышқылымен пептидтік байланыс пептидилтрансфераза ферментімен катализденеді. Үшінші сатыда жаңа пептидил-тРНҚ рибосоманың Р-учаскесіне көшеді, ол кезде рибосома иРНҚ молекуласының бойымен дәл үш нуклеотидке жылжиды. Бұл кезең энергияны көп қажет етеді; оның козғаушы күші бір катар конформациялық өзгерістер, олар рибосомалық молекулалардың бірінде, онымен байланысты GTPмолекуласының гидролизімен индукцияланады. Транслокация (орын ауыстыру) процесі - 3-сатыны құрайды, сондықтан 3-ші саты біткесін бос тұрған А-учаскесі кезекте амин қышқылы бар жаңа тРНҚ молекуласын қабылдайды, яғни цикл қайтадан басталады. Бактериялық клеткада полипептидтік тізбектің элонгациясының бір циклы, қалыпты жағдайда 1/20 с, сондықтан көлемі 400 амин қышқылынан тұратын орташа белоктың синтезі мөлшермен 20 с жүреді. Клетканың көп бөлігінде барлық биосинтетикалық процестермен салыстырғанда - белок синтезі ең энергияны көп қажет ететін. Жаңа пептидтік байланыстардың әрқайсысы түзілгенде төрт жоғары энергетикалық фосфаттық байланыстар ыдырайды. Олардың екеуі тРНҚ-ға амин қышқылын жалғауға, ал екеуі - рибосомада өтетін екі циклдегі реакцияларға жұмсалады; циклдың 1 сатысында аминоацил-тРНҚ-ны байланыстыру және 3-сатыда рибосоманың транслокациялануында пайдаланылады. Белоктардың синтезделуі негізінен екі кезеңнен тұрады:

*Ядролық кезең немесе транскрипция. Мұнда ДНҚ қос тізбегінің біреуінің комплементарлы көшірмесі болып табылатын и-РНҚ синтезі жүреді. Осы жолмен синтезделген и-РНҚ әрі қарай синтезделетін белоктың негізі болып табылады.

* Цитоплазмалық кезең яғни трансляция. Цитоплазмада 4 әріптік генетикалық информацияның триплеттік кодтың көмегімен 20 әріптік амин қышқылдарынан тұратын белоктың тізбегіне айналу процесі жүреді. Сонымен бірге онда белоктардың үшінші, төртінші реттік құрылысының кеңістікте орын алуы және олардың клетка метаболизміне тікелей қатынасуына мүмкіндік туады. Осы айтылған әрбір кезеңге қажет өзінің ферменттері, факторлары, индукторларымен тежеушілері болады. Клеткасыз жүйелер тіршілігін зерттеу осы факторларды ашуға мүмкіндік туғызды. Трансляция - цитоплазмада жүретін кезең. Бұл кезең кезінде тек қана 4 әріптік нуклеотидтік тілдің 20 әріптік аминқьшқылының тілге аударылуы ғана жүріп қоймайды, сонымен қатар амин қышқылдарының белоктық тізбектегі өз орнын табу мәселесі шешіледі. Трансляцияның өзі 5 кезеңнен тұрады. Трансляцияның І-ші кезеңі: амин қышқылдарының активтелуі. Бұл кезеңге қажетті заттар: 20 амин қышқылы, АТФ, Мg2+, 20т-РНҚ, 20 аминоацил -т-РНҚ - синтетаза ферменті. Бұл кезең жиырмадан астам аминоацил - т-РНҚ-синтетаза ферментінің қатысуымен өтеді. Бұлар айрықша талғамдылық көрсететін ферменттер, атап айтқанда осы ферменттің көмегімен амин қышқылы өзіне тән т-РНҚ таныса, т-РНҚ өзіне тән амин қышқылдарын таба алады. Сондықтан бұл ферментті "адаптор" деп те атайды. Аминоацил-т-РНҚ-синтетаза ферменттерінің осындай айрықша қасиет көрсетуіне т-РНҚ-ның құрылысының өзгешілігі жағдай жасайды.




Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2019 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных