Главная | Случайная
Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Примеры решения задач 5 страница




Или, вращая буравчик так, чтобы направление его поступательного движения совпадало с направлением тока в проводнике, по направлению вращения ручки буравчика получим направление вектора магнитной индукции (направление вращение ручки буравчика совпадает с направлением вектора магнитной индукции): в левой относительно PP/ части контура вектор магнитной индукции будет направлен перпендикулярно к этому контуру (или к рамке) вверх (перпендикулярно к чертежу на нас), в правой относительно перемычки PP/ части контура вектор магнитной индукции будет направлен перпендикулярно к этому контуру (или к рамке) вниз (перпендикулярно к чертежу от нас).

Магнитное поле называется однородным, если во всех его точках вектор магнитной индукции имеет одно и то же значение. В противном случае магнитное поле называется неоднородным.

Потоком вектора магнитной индукции (магнитным потоком) сквозь малую поверхность площадью dS называется физическая величина

,

где ‑ вектор площадки,

‑ единичный вектор нормали к площадке dS,

‑ проекция вектора на направление нормали (вектор ).

Малая площадка dS выбирается так, чтобы её можно было считать плоской, а значения вектора всюду в её пределах – одинаковыми.

Магнитный поток сквозь произвольную поверхность S:

.

При вычислении этого интеграла векторы нормалей к площадкам dS нужно направлять в одну и ту же сторону по отношению к поверхности S. Например, если поверхность S замкнутая, то векторы должны быть либо все внешними нормалями, либо все внутренними нормалями. Если магнитное поле однородно, а поверхность S плоская, то

.

 

Электромагнитной индукцией называется возникновение электродвижущей силы в проводнике при его перемещении в магнитном поле либо в замкнутом проводящем контуре вследствие его движения в магнитном поле или изменения самого поля. Эта электродвижущая сила eинд. называется электродвижущей силой электромагнитной индукции. Под её влиянием в замкнутом проводнике возникает электрический ток, называемый индукционным током.

Закон электромагнитной индукции (закон Фарадея ‑ Максвелла): ЭДС eинд. электромагнитной индукции в контуре пропорциональна и противоположна по знаку скорости изменения магнитного потока Фm сквозь поверхность, натянутую на этот контур, т.е.

.

При этом несущественно, чем именно вызвано изменение магнитного потока – деформацией контура, его перемещением в магнитном поле или изменением самого поля с течением времени. Направление обхода контура при вычислении eинд. и направление нормали при вычислении Фm должны быть согласованы по правилу правого винта: из конца вектора обход контура должен быть виден происходящим против часовой стрелки.

Знак «» в правой части закона электромагнитной индукции соответствует правилу Ленца: при всяком изменении магнитного потока сквозь поверхность, натянутую на замкнутый проводящий контур, в контуре возникает индукционный ток такого направления, что его собственное магнитное поле противодействует изменению магнитного потока, вызвавшему индукционный ток.

На нижеприведённом рисунке показаны направления индукционного тока Ii в замкнутом контуре и вектора магнитной индукции магнитного поля индукционного тока для двух случаев: усиления внешнего магнитного поля ( , рис. а) и его ослабления ( , рис. б).

Так как , а , то

.

ЭДС электромагнитной индукции возникает в каждом отрезке проводника, пересекающем при своём движении линии магнитной индукции поля. Перемычка PP/ пересекает при своём движении линии магнитной индукции поля. Значит, в ней возникает ЭДС электромагнитной индукции.

Действительно, при движении перемычки PP/, которая делит рамку на два контура, изменяется площадь поверхности S (каждого контура), пронизываемой потоком вектора магнитной индукции (магнитным потоком). Значит, изменяется и магнитный поток Фm ( ; ) через оба контура: . Следовательно, в обоих контурах наводится ЭДС индукции: . Так как магнитный поток через правый контур (см. рис.) уменьшается, а через левый увеличивается с одинаковой скоростью, то ЭДС индукции равны по модулю и имеют разные знаки по отношению к заданному направлению обхода контуров:

.

По условию задачи линии индукции однородного магнитного поля перпендикулярны к плоскости рамки (значит, и вектор магнитной индукции перпендикулярен к плоскости рамки); вектор тоже перпендикулярен к плоскости рамки ( ‑ вектор нормали к площадке dS). Следовательно,

.

Векторы и либо сонаправлены, либо противоположно направлены. Если и сонаправлены ( ), то и, следовательно, , . Если и противоположно направлены ( ), то и, следовательно, , .

Видно, что, если , то неважно, сонаправлены ли векторы и или противоположно направлены. В любом случае

.

Значит,

.

Найдём, по какому закону изменяется площадь поверхности S левого контура, пронизываемой потоком вектора магнитной индукции (магнитным потоком), при движении перемычки PP/ из точки O в центр квадрата E.

Если перемычка PP/ находится в точке O, то

S = 0.

Если перемычка пересекает центр квадрата E (центр куска перемычки, по которому (куску перемычки) будет идти ток, также будет находиться в точке E), то

S = SD OAC.

Поскольку OABC – квадрат, то диагонали OB и AC

1) равны:

OB = AC

(обозначим OB = AC = l);

2) пересекаются и точкой пересечения делятся пополам:

,

,

где E – точка пересечения диагоналей OB и AC ( );

т.е.

;

3) пересекаются под прямым углом:

OB ^ AC.

Площадь D OAC

.

Таким образом, при движении перемычки из точки O в центр квадрата (точку E) площадь поверхности левого контура, пронизываемой потоком вектора магнитной индукции (магнитным потоком), изменяется от 0 до .

Проведём через точки O и B ось x, начало которой выберем в точке O. Тогда координата точки E:

.

Площадь D OAC перепишем иначе:

,

здесь использовались равенства: AC = 2 AE, AE = OE, OE = xE.

(Действительно, (см. выше), а . Значит, SD OAC = xE2.)

Таким образом, площадь поверхности S левого контура, пронизываемой потоком вектора магнитной индукции (магнитным потоком), при движении перемычки PP/ из точки O в центр квадрата E изменяется по следующему закону:

S = x2,

где x – координата центра куска перемычки, по которому (куску перемычки) идёт ток.

В момент, когда перемычка достигает центра квадрата E, .

Следовательно,

,

где ‑ проекция на ось x скорости движения перемычки по рамке.

Но так как

ux = u,

то

.

 

Обобщённый закон Ома для произвольного участка цепи AC имеет вид:

IRAC = UAC = (jA ‑ jC) + eAC,

где RAC – сопротивление между точками A и C;

UACнапряжение между точками A и C;

(jA ‑ jC) – разность потенциалов на концах участка AC;

eAC – ЭДС всех источников электрической энергии, включенных на участке цепи AC.

В такой форме закон Ома применим как для пассивных участков цепи, не содержащих источников электрической энергии, так и для активных участков, содержащих такие источники.

В неразветвлённой замкнутой электрической цепи сила тока во всех сечениях одинакова, а сама цепь является участком с совпадающими концами 1 и 2 (см. рис. ниже). В такой цепи j1 = j2 и RAC = R – общее сопротивление всей цепи (в нашем случае, когда мы рассматриваем контур OACO, сопротивление R = ROACO).

Закон Ома для замкнутой электрической цепи:

IR = e,

где e ‑ алгебраическая сумма всех ЭДС, приложенных в цепи.

 

Так как перемычка и рамка замкнуты, ЭДС в цепи – это ЭДС индукции:

;

сопротивление рассматриваемого контура OACO есть ROACO:

R = ROACO;

ток, который течёт через перемычку в тот момент, когда она пересекает центр квадрата E (т.е. ), равен I, то

.

Найдём сопротивление контура OACO т.е. ROACO:

ROACO = ROA + ROC + RAC.

Сопротивлением R участка цепи между сечениями a и b называется интеграл

,

где r ‑ удельное электрическое сопротивление среды (в данном случае проволоки, из которой выполнены рамка и перемычка),

dl – длина малого участка проводника (в данном случае проволоки),

Sпров. – площадь поперечного сечения проводника.

Для однородного проводника постоянного сечения (что и представляет собой в данной задаче проволока) r = const, Sпров. = const и

,

где lab – длина проводника между сечениями a и b.

Длина перемычки PP/, по которой течёт ток I, когда она находится в центре квадрата, равна AC = l. Значит, её сопротивление

.

Если сопротивлением рамки пренебречь, т.е. (рассматривая участок OACO) ROA = ROC = 0, то

.

Тогда при подстановке в уравнение получим

,

откуда

.

Если сопротивлением рамки не пренебрегать, то с учётом того, что рамка и перемычка выполнены из одного куска проволоки с удельным электрическим сопротивлением r и площадью поперечного сечения Sпров.,

.

Здесь lOA = OA было найдено из теоремы Пифагора: так как рамка квадратная (т.е. OABC ‑ квадрат), то D OAC – прямоугольный (Ð O = 900), значит,

AC2 = OA2 + OC2.

OA = OC как стороны квадрата, AC = l. Следовательно,

.

Таким образом,

,

.

Зная ROA, ROC и RAC, найдём ROACO:

.

Тогда при подстановке в уравнение получим

,

откуда

.

Ответ: если сопротивлением рамки пренебречь, то ;

если сопротивлением рамки не пренебрегать, то ;

в левой относительно PP/ части контура вектор магнитной индукции направлен перпендикулярно к этому контуру (или к рамке) вверх (перпендикулярно к чертежу на нас);

в правой относительно перемычки PP/ части контура вектор магнитной индукции направлен перпендикулярно к этому контуру (или к рамке) вниз (перпендикулярно к чертежу от нас).

25.Определить магнитную индукцию B поля, создаваемого отрезком бесконечно длинного провода, в точке, равноудалённой от концов отрезка и находящейся на расстоянии R = 4 см от его середины. Длина отрезка провода l = 20 см, а сила тока в проводе I = 10 А.

Дано: R = 4 см = 4×10-2 м l = 20 см = 2×10-1 м I = 10 А Решение. Для магнитного поля, так же как для электрического, справедлив принцип суперпозиции: магнитная индукция поля произвольной системы проводников с токами (или системы отдельных движущихся электрически заряжен-
B ‑ ?

ных частиц)равна геометрической сумме магнитных индукций полей всех малых элементов этих проводников (соответственно каждой из движущихся заряженных частиц).

Принцип суперпозиции электрических полей (принцип независимости действия электрических полей): напряжённость электрического поля системы зарядов равна геометрической сумме напряжённостей полей каждого из зарядов в отдельности.

Магнитная индукция поля малого элемента проводника длиной dl, по которому течёт постоянный электрический ток силой I, удовлетворяет закону Био – Савара – Лапласа:

,

где ‑ радиус-вектор, проведённый из элемента проводника в рассматриваемую точку поля, т.е. в точку поля, в которой определяется магнитная индукция;

m0 = 4p×10-7 Гн/ммагнитная постоянная;

m ‑ магнитная проницаемость среды. В вакууме m = 1.

Из закона Био – Савара – Лапласа следует, что

,

где j ‑ угол между векторами и .

Из рисунка видно, что

,

.

Значит,

.

Интегрируя левую и правую части уравнения, получим

.

Рассмотрим отдельно правую часть:

,

где обозначили .

Таким образом,

,

где константу интегрирования C можно найти из граничных условий:

при l ® ¥ (т.е. для прямого бесконечно длинного проводника, а по условию задачи данный проводник бесконечно длинный) индукция магнитного поля (R – кратчайшее расстояние от проводника до точки, в которой подсчитывается индукция поля).

Значит (при подстановке в длины l ® ¥ должно получиться ),

,

откуда

.

Следовательно, магнитная индукция B поля, создаваемого отрезком бесконечно длинного провода, в точке, равноудалённой от концов отрезка и находящейся на расстоянии R от его середины, равна

.

.

Ответ: .

26.Круговой виток радиусом R = 15 см расположен относительно бесконечно длинного провода так, что его плоскость параллельна проводу. Перпендикуляр, восстановленный на провод из центра витка, является нормалью к плоскости витка. Сила тока в проводе I1 = 1 А, сила тока в витке I2 = 5 А. Расстояние от центра витка до провода d = 20 см. Определить магнитную индукцию в центре витка.

Дано: R = 15 см = 15×10-2 м I1 = 1 А I2 = 5 А d = 20 см = 2×10-1 м Решение. Для магнитного поля, так же как для электрического, справедлив принцип суперпозиции: магнитная индукция поля произвольной системы проводников с токами (или системы отдельных движущихся электрически заряженных частиц) равна геометрической сумме
B ‑ ?

магнитных индукций полей всех малых элементов этих проводников (соответственно каждой из движущихся заряженных частиц).

Принцип суперпозиции электрических полей (принцип независимости действия электрических полей): напряжённость электрического поля системы зарядов равна геометрической сумме напряжённостей полей каждого из зарядов в отдельности.

Магнитная индукция поля, создаваемого бесконечно длинным прямым проводником с током, по которому течёт постоянный электрический ток силой I1, равна

,

где m0 = 4p×10-7 Гн/ммагнитная постоянная;

m ‑ относительная магнитная проницаемость вещества (среды). В вакууме m = 1;

d – расстояние от провода до рассматриваемой точки поля, в которой необходимо определить магнитную индукцию поля (т.е. расстояние от провода до центра витка);

Магнитная индукция в центре кругового проводника с током

,

где R – радиус кривизны проводника (витка).

Так как , где ‑ вектор бесконечно длинного прямого проводника с током; , где ‑ нормаль к плоскости витка (т.е. перпендикулярен плоскости витка). А так как по условию задачи перпендикуляр, восстановленный на провод из центра витка, является нормалью к плоскости витка, т.е. , то

.




Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2019 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных